Vous apprendre étape par étape comment utiliser Flask pour créer un moteur de recherche ES (partie préparatoire)

Libérer: 2023-07-25 17:27:28
avant
1069 Les gens l'ont consulté

/1 Préface/

Elasticsearch est un moteur de recherche open source, construit sur une bibliothèque de moteurs de recherche en texte intégral Apache Lucene™ Basé sur les bases.


Vous apprendre étape par étape comment utiliser Flask pour créer un moteur de recherche ES (partie préparatoire)

Alors, comment implémenter

Elasticsearch et Python l'amarrage de est devenu une préoccupation pour nous (pourquoi avons-nous pour tout connecter ?

/2 Interaction Python/

Donc, Python Il fournit également des bibliothèques de dépendances qui peuvent être connectées à Elasticsearch .


pip install elasticsearch
Copier après la connexion


Initialise une connexion à un objet d'opération Elasticsearch .

def __init__(self, index_type: str, index_name: str, ip="127.0.0.1"):

    # self.es = Elasticsearch([ip], http_auth=('username', 'password'), port=9200)
    self.es = Elasticsearch("localhost:9200")
    self.index_type = index_type
    self.index_name = index_name
Copier après la connexion

Le port par défaut est 9200 Veuillez vous assurer que l'environnement local de Elasticsearch a été configuré avant l'initialisation.

Obtenez les données du document en fonction de l'ID


def get_doc(self, uid):
    return self.es.get(index=self.index_name, id=uid)
Copier après la connexion


插入文档数据


def insert_one(self, doc: dict):
    self.es.index(index=self.index_name, doc_type=self.index_type, body=doc)

def insert_array(self, docs: list):
    for doc in docs:
        self.es.index(index=self.index_name, doc_type=self.index_type, body=doc)
Copier après la connexion


搜索文档数据


def search(self, query, count: int = 30):
    dsl = {
        "query": {
            "multi_match": {
                "query": query,
                "fields": ["title", "content", "link"]
            }
        },
        "highlight": {
            "fields": {
                "title": {}
            }
        }
    }
    match_data = self.es.search(index=self.index_name, body=dsl, size=count)
    return match_data

def __search(self, query: dict, count: int = 20): # count: 返回的数据大小
    results = []
    params = {
        'size': count
    }
    match_data = self.es.search(index=self.index_name, body=query, params=params)
    for hit in match_data['hits']['hits']:
        results.append(hit['_source'])

    return results
Copier après la connexion

删除文档数据


def delete_index(self):
    try:
        self.es.indices.delete(index=self.index_name)
    except:
        pass
Copier après la connexion

好啊,封装 search 类也是为了方便调用,整体贴一下。

from elasticsearch import Elasticsearch


class elasticSearch():

    def __init__(self, index_type: str, index_name: str, ip="127.0.0.1"):

        # self.es = Elasticsearch([ip], http_auth=('elastic', 'password'), port=9200)
        self.es = Elasticsearch("localhost:9200")
        self.index_type = index_type
        self.index_name = index_name

    def create_index(self):
        if self.es.indices.exists(index=self.index_name) is True:
            self.es.indices.delete(index=self.index_name)
        self.es.indices.create(index=self.index_name, ignore=400)

    def delete_index(self):
        try:
            self.es.indices.delete(index=self.index_name)
        except:
            pass

    def get_doc(self, uid):
        return self.es.get(index=self.index_name, id=uid)

    def insert_one(self, doc: dict):
        self.es.index(index=self.index_name, doc_type=self.index_type, body=doc)

    def insert_array(self, docs: list):
        for doc in docs:
            self.es.index(index=self.index_name, doc_type=self.index_type, body=doc)

    def search(self, query, count: int = 30):
        dsl = {
            "query": {
                "multi_match": {
                    "query": query,
                    "fields": ["title", "content", "link"]
                }
            },
            "highlight": {
                "fields": {
                    "title": {}
                }
            }
        }
        match_data = self.es.search(index=self.index_name, body=dsl, size=count)
        return match_data
Copier après la connexion

尝试一下把 Mongodb 中的数据插入到 ES 中。

import json
from datetime import datetime
import pymongo
from app.elasticsearchClass import elasticSearch

client = pymongo.MongoClient('127.0.0.1', 27017)
db = client['spider']
sheet = db.get_collection('Spider').find({}, {'_id': 0, })

es = elasticSearch(index_type="spider_data",index_name="spider")
es.create_index()

for i in sheet:
    data = {
            'title': i["title"],
            'content':i["data"],
            'link': i["link"],
            'create_time':datetime.now()
        }

    es.insert_one(doc=data)
Copier après la connexion

ES 中查看一下,启动 elasticsearch-head 插件。

如果是 npm 安装的那么 cd 到根目录之后直接 npm run start 就跑起来了。

本地访问 http://localhost:9100/

Vous apprendre étape par étape comment utiliser Flask pour créer un moteur de recherche ES (partie préparatoire)

发现新加的 spider 数据文档确实已经进去了。

/3 爬虫入库/

要想实现 ES 搜索,首先要有数据支持,而海量的数据往往来自爬虫。

为了节省时间,编写一个最简单的爬虫,抓取 百度百科

简单粗暴一点,先 递归获取 很多很多的 url 链接


import requests
import re
import time

exist_urls = []
headers = {
    'User-Agent': 'Mozilla/5.0 (Windows NT 6.1) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/62.0.3202.62 Safari/537.36',
}

def get_link(url):
    try:
        response = requests.get(url=url, headers=headers)
        response.encoding = 'UTF-8'
        html = response.text
        link_lists = re.findall(&#39;.*?<a target=_blank href="/item/([^:#=<>]*?)".*?</a>&#39;, html)
        return link_lists
    except Exception as e:
        pass
    finally:
        exist_urls.append(url)


# 当爬取深度小于10层时,递归调用主函数,继续爬取第二层的所有链接
def main(start_url, depth=1):
    link_lists = get_link(start_url)
    if link_lists:
        unique_lists = list(set(link_lists) - set(exist_urls))
        for unique_url in unique_lists:
            unique_url = &#39;https://baike.baidu.com/item/&#39; + unique_url

            with open(&#39;url.txt&#39;, &#39;a+&#39;) as f:
                f.write(unique_url + &#39;\n&#39;)
                f.close()
        if depth < 10:
            main(unique_url, depth + 1)

if __name__ == &#39;__main__&#39;:
    start_url = &#39;https://baike.baidu.com/item/%E7%99%BE%E5%BA%A6%E7%99%BE%E7%A7%91&#39;
    main(start_url)
Copier après la connexion


把全部 url 存到 url.txt 文件中之后,然后启动任务。


# parse.py
from celery import Celery
import requests
from lxml import etree
import pymongo
app = Celery(&#39;tasks&#39;, broker=&#39;redis://localhost:6379/2&#39;)
client = pymongo.MongoClient(&#39;localhost&#39;,27017)
db = client[&#39;baike&#39;]
@app.task
def get_url(link):
    item = {}
    headers = {&#39;User-Agent&#39;:&#39;Mozilla/5.0 (Macintosh; Intel Mac OS X 10_9_2) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/34.0.1847.131 Safari/537.36&#39;}
    res = requests.get(link,headers=headers)
    res.encoding = &#39;UTF-8&#39;
    doc = etree.HTML(res.text)
    content = doc.xpath("//div[@class=&#39;lemma-summary&#39;]/div[@class=&#39;para&#39;]//text()")
    print(res.status_code)
    print(link,&#39;\t&#39;,&#39;++++++++++++++++++++&#39;)
    item[&#39;link&#39;] = link
    data = &#39;&#39;.join(content).replace(&#39; &#39;, &#39;&#39;).replace(&#39;\t&#39;, &#39;&#39;).replace(&#39;\n&#39;, &#39;&#39;).replace(&#39;\r&#39;, &#39;&#39;)
    item[&#39;data&#39;] = data
    if db[&#39;Baike&#39;].insert(dict(item)):
        print("is OK ...")
    else:
        print(&#39;Fail&#39;)
Copier après la connexion

run.py 飞起来


from parse import get_url

def main(url):
    result = get_url.delay(url)
    return result

def run():
    with open(&#39;./url.txt&#39;, &#39;r&#39;) as f:
        for url in f.readlines():
            main(url.strip(&#39;\n&#39;))

if __name__ == &#39;__main__&#39;:
    run()
Copier après la connexion


黑窗口键入


celery -A parse worker -l info -P gevent -c 10
Copier après la connexion

哦豁 !!   你居然使用了 Celery 任务队列,gevent 模式,-c 就是10个线程刷刷刷就干起来了,速度杠杠的 !!

啥?分布式? 那就加多几台机器啦,直接把代码拷贝到目标服务器,通过 redis 共享队列协同多机抓取。

这里是先将数据存储到了 MongoDB 上(个人习惯),你也可以直接存到 ES 中,但是单条单条的插入速度堪忧(接下来会讲到优化,哈哈)。

使用前面的例子将 Mongo 中的数据批量导入到 ES 中,OK !!!

Vous apprendre étape par étape comment utiliser Flask pour créer un moteur de recherche ES (partie préparatoire)

到这一个简单的数据抓取就已经完毕了。

好啦,现在 ES 中已经有了数据啦,接下来就应该是 Flask web 的操作啦,当然,DjangoFastAPI 也很优秀。嘿嘿,你喜欢 !!

关于FastAPI 的文章可以看这个系列文章:

1、(入门篇)简析Python web框架FastAPI——一个比Flask和Tornada更高性能的API 框架

2、(进阶篇)Python web框架FastAPI——一个比Flask和Tornada更高性能的API 框架

3、(完结篇)Python web框架FastAPI——一个比Flask和Tornada更高性能的API 框架

/4 Flask 项目结构/

Vous apprendre étape par étape comment utiliser Flask pour créer un moteur de recherche ES (partie préparatoire)


这样一来前期工作就差不多了,接下来剩下的工作主要集中于 Flask 的实际开发中,蓄力中 !!

Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Étiquettes associées:
source:Go语言进阶学习
Déclaration de ce site Web
Le contenu de cet article est volontairement contribué par les internautes et les droits d'auteur appartiennent à l'auteur original. Ce site n'assume aucune responsabilité légale correspondante. Si vous trouvez un contenu suspecté de plagiat ou de contrefaçon, veuillez contacter admin@php.cn
Tutoriels populaires
Plus>
Derniers téléchargements
Plus>
effets Web
Code source du site Web
Matériel du site Web
Modèle frontal