PHP et apprentissage automatique : Comment effectuer la reconnaissance d'images et la détection de cibles
Introduction :
L'apprentissage automatique a fait de grandes percées dans la reconnaissance d'images et la détection de cibles. Pour les développeurs PHP, il est de plus en plus facile d’utiliser l’apprentissage automatique pour la reconnaissance d’images et la détection d’objets. Cet article expliquera comment utiliser PHP pour la reconnaissance d'images et la détection d'objets, et fournira des exemples de code.
1. Préparation
Avant de commencer, nous devons préparer quelques outils et bibliothèques. Tout d’abord, nous devons installer PHP et ses bibliothèques d’apprentissage automatique compatibles. En PHP, les bibliothèques d'apprentissage automatique couramment utilisées incluent TensorFlow et OpenCV. Parmi eux, TensorFlow est une puissante bibliothèque d'apprentissage en profondeur qui peut être utilisée pour la reconnaissance d'images et la détection de cibles. OpenCV est une bibliothèque de vision par ordinateur principalement utilisée pour le traitement et l'analyse d'images.
Les étapes pour installer PHP et les bibliothèques d'apprentissage automatique sont légèrement compliquées, nous ne les expliquerons donc pas une par une ici. Les lecteurs peuvent l'installer via des documents officiels ou d'autres tutoriels. Une fois l'installation terminée, nous pouvons démarrer la reconnaissance d'images et la détection de cibles.
2. Reconnaissance d'images
La reconnaissance d'images fait référence à la classification des images via des modèles d'apprentissage automatique. Ci-dessous, nous utiliserons TensorFlow pour la reconnaissance d'images.
Tout d'abord, nous devons préparer un modèle entraîné. Nous pouvons utiliser un modèle existant ou former nous-mêmes un nouveau modèle. Ici, nous choisissons un modèle existant pour la démonstration. Dans le référentiel officiel TensorFlow GitHub, il existe un exemple de projet appelé « tensorflow-for-poets », qui fournit des modèles prêts à l'emploi et des données de formation.
Téléchargez l'exemple de projet :
$ git clone https://github.com/googlecodelabs/tensorflow-for-poets-2
Allez dans le répertoire du projet :
$ cd tensorflow-for-poets-2
Téléchargez le modèle Inception V3 formé :
$ curl -O http://download.tensorflow.org/models/image/imagenet/inception-2015-12-05.tgz $ tar xzf inception-2015-12-05.tgz
Exécutez le programme de reconnaissance d'image :
$ php -S localhost:8000
Ouvrez http://localhost:8000
dans le navigateur, vous verrez une interface de reconnaissance d'image simple. Vous pouvez cliquer sur le bouton "Choisir un fichier" pour sélectionner une image à reconnaître. Une fois la reconnaissance terminée, le nom et le niveau de confiance de l'objet dans l'image seront affichés. http://localhost:8000
,你将看到一个简单的图像识别界面。可以点击“Choose File”按钮选择一张图像进行识别。识别完成后,会显示图片中的物体名称和置信度。
三、目标检测
目标检测是指在图像中找出并定位特定的物体。下面我们将使用OpenCV来进行目标检测。
首先,我们需要安装OpenCV的PHP扩展。可以通过以下命令进行安装:
$ pecl install opencv
安装完成后,我们就可以编写代码来进行目标检测了。
创建目标检测脚本object_detection.php
Tout d’abord, nous devons installer l’extension PHP OpenCV. Il peut être installé via la commande suivante :
<?php $objectCascade = new CvHaarClassifierCascade(); $objectCascade->load("path/to/cascade.xml"); // 加载目标分类器文件 $image = new CvImage(); $image->load("path/to/image.jpg"); // 加载待检测的图像 $grayImage = $image->convertColor(CV_BGR2GRAY); // 转换为灰度图像 $grayImage->equalizeHist(); // 直方图均衡化 $objects = $grayImage->detectObjects($objectCascade); // 检测目标 foreach ($objects as $object) { $image->rectangle($object->x, $object->y, $object->x + $object->width, $object->y + $object->height, CvScalar::all(255), 2); // 在图像上绘制检测到的矩形 } $image->show("Object detection"); // 显示图像和检测结果
Créez le script de détection d'objet object_detection.php
:
$ php object_detection.php
Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!