Utilisez PHP et coreseek pour implémenter la fonction de recherche d'images intelligente
Résumé :
Cet article présentera comment utiliser PHP et la bibliothèque de moteurs de recherche open source coreseek pour implémenter la fonction de recherche d'images intelligente. Grâce à l’extraction de caractéristiques et à la comparaison des similarités des images, nous pouvons rapidement trouver des images similaires dans un grand nombre d’images. De plus, nous utiliserons également la fonction de recherche en texte intégral de coreseek pour réaliser la fonction de recherche d'images basée sur des mots-clés.
Mots clés : PHP, coreseek, recherche d'images, extraction de fonctionnalités, comparaison de similarités
Ce qui suit est un exemple de code pour extraire un histogramme de couleurs à l'aide de PHP et de la bibliothèque OpenCV :
<?php // 载入OpenCV库 $opencv = new OpenCV(); // 读取图片 $image = $opencv->loadImage('example.jpg'); // 提取颜色直方图 $histogram = $opencv->calculateHistogram($image); // 将直方图转换为特征向量 $featureVector = flatten($histogram); // 存储特征向量到数据库或文件 saveFeatureVector($featureVector); ?>
Le code ci-dessus charge d'abord la bibliothèque OpenCV, puis lit une image. Ensuite, l'histogramme de couleur est calculé et converti en vecteur de caractéristiques en appelant la fonction calculateHistogram
. Enfin, nous pouvons stocker ce vecteur de caractéristiques dans une base de données ou un fichier pour une utilisation ultérieure. calculateHistogram
函数计算颜色直方图,并将其转换为特征向量。最后,我们可以将该特征向量存储到数据库或文件中供后续使用。
以下是使用PHP计算余弦相似度的示例代码:
<?php // 计算余弦相似度 function cosineSimilarity($vector1, $vector2) { $dotProduct = dotProduct($vector1, $vector2); $magnitude1 = magnitude($vector1); $magnitude2 = magnitude($vector2); return $dotProduct / ($magnitude1 * $magnitude2); } // 计算向量的点积 function dotProduct($vector1, $vector2) { $result = 0; foreach ($vector1 as $key => $value) { $result += $value * $vector2[$key]; } return $result; } // 计算向量的模长 function magnitude($vector) { $result = 0; foreach ($vector as $value) { $result += $value * $value; } return sqrt($result); } // 加载用户上传的图片 $userImage = loadImage($_FILES['image']); // 提取用户上传图片的特征向量 $userFeatureVector = extractFeatureVector($userImage); // 加载数据库中的图片特征向量 $databaseFeatureVectors = loadFeatureVectors(); // 计算所有图片特征向量与用户上传图片的相似度 $similarImages = array(); foreach ($databaseFeatureVectors as $featureVector) { $similarity = cosineSimilarity($featureVector, $userFeatureVector); if ($similarity > 0.8) { $similarImages[] = $featureVector; } } ?>
上述代码首先定义了计算余弦相似度的函数。然后,通过调用loadImage
和extractFeatureVector
函数获取用户上传图片的特征向量。接下来,通过调用loadFeatureVectors
函数加载数据库中的图片特征向量。最后,通过计算相似度并筛选出相似度大于0.8的图片,我们可以得到与用户上传图片相似的图片。
以下是使用PHP和coreseek实现关键词搜索的示例代码:
<?php // 初始化coreseek $sphinx = new SphinxClient(); $sphinx->SetServer('localhost', 9312); // 执行关键词搜索 $result = $sphinx->Query('keyword'); // 处理搜索结果 if ($result['total'] > 0) { $ids = array(); foreach ($result['matches'] as $match) { $ids[] = $match['id']; } // 根据搜索结果的ID获取图片信息 $images = getImagesByIds($ids); // 显示搜索结果 foreach ($images as $image) { displayImage($image); } } else { echo '未找到相关图片'; } ?>
上述代码首先初始化coreseek,并指定搜索服务器的地址和端口。然后,通过调用Query
loadImage
et extractFeatureVector
. Ensuite, chargez les vecteurs de caractéristiques de l'image dans la base de données en appelant la fonction loadFeatureVectors
. Enfin, en calculant la similarité et en filtrant les images ayant une similarité supérieure à 0,8, nous pouvons obtenir des images similaires aux images téléchargées par l'utilisateur. 🎜Query
. Ensuite, nous pouvons obtenir les informations d'image correspondantes en fonction de l'ID du résultat de la recherche et les afficher. 🎜🎜🎜Conclusion🎜Cet article présente comment utiliser PHP et coreseek pour implémenter la fonction de recherche d'images intelligente. Grâce à l’extraction de caractéristiques et à la comparaison des similarités des images, nous pouvons rapidement trouver des images similaires dans un grand nombre d’images. De plus, grâce à la fonction de recherche en texte intégral de coreseek, nous pouvons également rechercher des images en fonction de mots-clés. J'espère que cet article vous aidera à comprendre et à mettre en œuvre la recherche d'images intelligente. 🎜🎜Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!