pip install palettable -i https://pypi.tuna.tsinghua.edu.cn/simple
Bold_9.show_discrete_image()#Bold_9各种颜色条图片
print(Bold_9.number)#Bold_9这种colormap中单颜色的数目
Le « pratique » dans le monde des palettes
Certains amis disent que les couleurs intégrées de la visualisation python sont laides, alors vous ne devez jamais avoir rencontré palettable, palettable est une bibliothèque de barres de couleurs (Colormap) écrite en python pur, qui rassemble un grand nombre de visualisations bien connues La barre de couleurs du logiciel (telle que le système de couleurs Tableau, certains systèmes de couleurs matplotlib, etc.) compte un total de 1587 types de barres de couleurs (Colormap), et des dizaines de milliers de couleurs uniques peuvent être utilisé. Cet article présente en détail comment utiliser palettable .
Répertoire de cet article

1. carte)
pip install palettable -i https://pypi.tuna.tsinghua.edu.cn/simple
Copier après la connexion
pip install palettable -i https://pypi.tuna.tsinghua.edu.cn/simple
import palettable
from palettable.cartocolors.qualitative import Bold_9
#为了描述方便,此处直接倒入palettable.cartocolors.qualitative大类下的Bold_9小类,
#实际使用时可直接用palettable.cartocolors.qualitative.Bold_9
Copier après la connexion
import palettable from palettable.cartocolors.qualitative import Bold_9 #为了描述方便,此处直接倒入palettable.cartocolors.qualitative大类下的Bold_9小类, #实际使用时可直接用palettable.cartocolors.qualitative.Bold_9

Bold_9.show_discrete_image()#Bold_9各种颜色条图片
Copier après la connexion
attributs importants palettes - affiche la valeur du numéro de couleur d'une seule couleur dans la barre de chrominanceBold_9.show_discrete_image()#Bold_9各种颜色条图片
print(Bold_9.number)#Bold_9这种colormap中单颜色的数目
Copier après la connexion
[(0.4980392156862745, 0.23529411764705882, 0.5529411764705883), (0.0666666666666667, 0.6470588235294118, 0.4745098, 039215686), (0,2235294117647059, 0,4117647058823529, 0,6745098039215687), (0,9490196078431372, 0,7176470588235294, 0,0039215686, 2745098), (0,9058823529411765, 0,24705882352941178, 0,4549019607843137), (0,5019607843137255, 0,7294117647058823, 0,35294117647058826), (0,9019607843137255, 0,5137254901960784, 0,06274509803921569), (0,0, 0,5254901960784314, 0,5843137254901 961), (0.8117647058823529, 0.10980392156862745, 0.56470588235 29412)]print(Bold_9.number)#Bold_9这种colormap中单颜色的数目
Matplotlib中使用palettable
import matplotlib.pyplot as plt import matplotlib as mpl import palettable mpl.rc_file_defaults() my_dpi = 96 plt.figure(figsize=(580 / my_dpi, 580 / my_dpi), dpi=my_dpi) plt.subplot(221) patches, texts, autotexts = plt.pie( x=[1, 2, 3], labels=['A', 'B', 'C'], #使用palettable.tableau.BlueRed_6 colors=palettable.tableau.BlueRed_6.mpl_colors[0:3], autopct='%.2f%%', explode=(0.1, 0, 0)) patches[0].set_alpha(0.3) patches[2].set_hatch('|') patches[1].set_hatch('x') plt.title('tableau.BlueRed_6', size=12) mpl.rc_file_defaults() plt.subplot(222) patches, texts, autotexts = plt.pie( x=[1, 2, 3], labels=['A', 'B', 'C'], #使用palettable.cartocolors.qualitative.Bold_9 colors=palettable.cartocolors.qualitative.Bold_9.mpl_colors[0:3], autopct='%.2f%%', explode=(0.1, 0, 0)) patches[0].set_alpha(0.3) patches[2].set_hatch('|') patches[1].set_hatch('x') plt.title('cartocolors.qualitative.Bold_9', size=12) mpl.rc_file_defaults() plt.subplot(223) patches, texts, autotexts = plt.pie( x=[1, 2, 3], labels=['A', 'B', 'C'], #使用palettable.cartocolors.qualitative.Bold_9 colors=palettable.cartocolors.qualitative.Bold_9.mpl_colors[0:3], autopct='%.2f%%', explode=(0.1, 0, 0)) patches[0].set_alpha(0.3) patches[2].set_hatch('|') patches[1].set_hatch('x') plt.title('cartocolors.qualitative.Bold_9', size=12) plt.subplot(223) patches, texts, autotexts = plt.pie( x=[1, 2, 3], labels=['A', 'B', 'C'], #使用palettable.lightbartlein.sequential.Blues10_5 colors=palettable.lightbartlein.sequential.Blues10_5.mpl_colors[0:3], autopct='%.2f%%', explode=(0.1, 0, 0)) #matplotlib.patches.Wedge patches[0].set_alpha(0.3) patches[2].set_hatch('|') patches[1].set_hatch('x') plt.title('lightbartlein.sequential.Blues10_5', size=12) plt.subplot(224) patches, texts, autotexts = plt.pie( x=[1, 2, 3], labels=['A', 'B', 'C'], colors=palettable.wesanderson.Moonrise5_6.mpl_colors[0:3], autopct='%.2f%%', explode=(0.1, 0, 0)) patches[0].set_alpha(0.3) patches[2].set_hatch('|') patches[1].set_hatch('x') plt.title('wesanderson.Moonrise5_6', size=12) plt.show()
Seaborn中使用palettable
例子来自几行代码绘制靓丽矩阵图
使用palettable.tableau.TrafficLight_9
import seaborn as sns iris_sns = sns.load_dataset("iris") import palettable g = sns.pairplot( iris_sns, hue='species', palette=palettable.tableau.TrafficLight_9.mpl_colors, #Matplotlib颜色 ) sns.set(style='whitegrid') g.fig.set_size_inches(10, 8) sns.set(style='whitegrid', font_scale=1.5)
使用palettable.tableau.BlueRed_6使用palettable.cartocolors.qualitative.Bold_9
使用palettable.wesanderson.Moonrise5_6
使用palettable.cartocolors.diverging.ArmyRose_7_r
3、palettable包含那些颜色条(Colormap)
palettable下面有16大类Colormap,共计1587小类Colormap,合计上万种单颜色可供使用,已经整理为pdf格式,感兴趣的可以
包含以下16大类
palettable.cartocolors.diverging palettable.cartocolors.qualitative palettable.cartocolors.sequential palettable.cmocean.diverging palettable.cmocean.sequential palettable.colorbrewer.diverging palettable.colorbrewer.qualitative palettable.colorbrewer.sequential palettable.lightbartlein.diverging palettable.lightbartlein.sequential palettable.scientific.diverging palettable.scientific.sequential palettable.matplotlib palettable.mycarta palettable.tableau palettable.wesanderson
共计1587小类【每个小类还有逆类,名称后面加“_r”即可】上面16大类下面有数个小类,例如,著名BI软件Tableau的配色条palettable.tableau这一大类,下面有palettable.tableau.BlueRed_12,palettable.tableau.GreenOrange_12等等数个小类:
palettable.tableau.BlueRed_12 palettable.tableau.BlueRed_6 palettable.tableau.ColorBlind_10 palettable.tableau.Gray_5 palettable.tableau.GreenOrange_12 palettable.tableau.GreenOrange_6 palettable.tableau.PurpleGray_12 palettable.tableau.PurpleGray_6 palettable.tableau.TableauLight_10 palettable.tableau.TableauMedium_10 palettable.tableau.Tableau_10 palettable.tableau.Tableau_20 palettable.tableau.TrafficLight_9
也就是类似上面的这种有1587行。
Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Outils d'IA chauds

Undresser.AI Undress
Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover
Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool
Images de déshabillage gratuites

Clothoff.io
Dissolvant de vêtements AI

AI Hentai Generator
Générez AI Hentai gratuitement.

Article chaud

Outils chauds

Bloc-notes++7.3.1
Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise
Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1
Puissant environnement de développement intégré PHP

Dreamweaver CS6
Outils de développement Web visuel

SublimeText3 version Mac
Logiciel d'édition de code au niveau de Dieu (SublimeText3)

PHP et Python ont leurs propres avantages et inconvénients, et le choix dépend des besoins du projet et des préférences personnelles. 1.Php convient au développement rapide et à la maintenance des applications Web à grande échelle. 2. Python domine le domaine de la science des données et de l'apprentissage automatique.

Une formation efficace des modèles Pytorch sur les systèmes CentOS nécessite des étapes, et cet article fournira des guides détaillés. 1. Préparation de l'environnement: Installation de Python et de dépendance: le système CentOS préinstalle généralement Python, mais la version peut être plus ancienne. Il est recommandé d'utiliser YUM ou DNF pour installer Python 3 et Mettez PIP: sudoyuMupDatePython3 (ou sudodnfupdatepython3), pip3install-upradepip. CUDA et CUDNN (accélération GPU): Si vous utilisez Nvidiagpu, vous devez installer Cudatool

Docker utilise les fonctionnalités du noyau Linux pour fournir un environnement de fonctionnement d'application efficace et isolé. Son principe de travail est le suivant: 1. Le miroir est utilisé comme modèle en lecture seule, qui contient tout ce dont vous avez besoin pour exécuter l'application; 2. Le Système de fichiers Union (UnionFS) empile plusieurs systèmes de fichiers, ne stockant que les différences, l'économie d'espace et l'accélération; 3. Le démon gère les miroirs et les conteneurs, et le client les utilise pour l'interaction; 4. Les espaces de noms et les CGROUP implémentent l'isolement des conteneurs et les limitations de ressources; 5. Modes de réseau multiples prennent en charge l'interconnexion du conteneur. Ce n'est qu'en comprenant ces concepts principaux que vous pouvez mieux utiliser Docker.

Activer l'accélération du GPU Pytorch sur le système CentOS nécessite l'installation de versions CUDA, CUDNN et GPU de Pytorch. Les étapes suivantes vous guideront tout au long du processus: CUDA et CUDNN Installation détermineront la compatibilité de la version CUDA: utilisez la commande NVIDIA-SMI pour afficher la version CUDA prise en charge par votre carte graphique NVIDIA. Par exemple, votre carte graphique MX450 peut prendre en charge CUDA11.1 ou plus. Téléchargez et installez Cudatoolkit: visitez le site officiel de Nvidiacudatoolkit et téléchargez et installez la version correspondante selon la version CUDA la plus élevée prise en charge par votre carte graphique. Installez la bibliothèque CUDNN:

Python et JavaScript ont leurs propres avantages et inconvénients en termes de communauté, de bibliothèques et de ressources. 1) La communauté Python est amicale et adaptée aux débutants, mais les ressources de développement frontal ne sont pas aussi riches que JavaScript. 2) Python est puissant dans les bibliothèques de science des données et d'apprentissage automatique, tandis que JavaScript est meilleur dans les bibliothèques et les cadres de développement frontaux. 3) Les deux ont des ressources d'apprentissage riches, mais Python convient pour commencer par des documents officiels, tandis que JavaScript est meilleur avec MDNWEBDOCS. Le choix doit être basé sur les besoins du projet et les intérêts personnels.

Minio Object Storage: Déploiement haute performance dans le système Centos System Minio est un système de stockage d'objets distribué haute performance développé sur la base du langage Go, compatible avec Amazons3. Il prend en charge une variété de langages clients, notamment Java, Python, JavaScript et GO. Cet article introduira brièvement l'installation et la compatibilité de Minio sur les systèmes CentOS. Compatibilité de la version CentOS Minio a été vérifiée sur plusieurs versions CentOS, y compris, mais sans s'y limiter: CentOS7.9: fournit un guide d'installation complet couvrant la configuration du cluster, la préparation de l'environnement, les paramètres de fichiers de configuration, le partitionnement du disque et la mini

Lors de la sélection d'une version Pytorch sous CentOS, les facteurs clés suivants doivent être pris en compte: 1. CUDA Version Compatibilité GPU Prise en charge: si vous avez NVIDIA GPU et que vous souhaitez utiliser l'accélération GPU, vous devez choisir Pytorch qui prend en charge la version CUDA correspondante. Vous pouvez afficher la version CUDA prise en charge en exécutant la commande nvidia-SMI. Version CPU: Si vous n'avez pas de GPU ou que vous ne souhaitez pas utiliser de GPU, vous pouvez choisir une version CPU de Pytorch. 2. Version Python Pytorch

CENTOS L'installation de Nginx nécessite de suivre les étapes suivantes: Installation de dépendances telles que les outils de développement, le devet PCRE et l'OpenSSL. Téléchargez le package de code source Nginx, dézippez-le et compilez-le et installez-le, et spécifiez le chemin d'installation AS / USR / LOCAL / NGINX. Créez des utilisateurs et des groupes d'utilisateurs de Nginx et définissez les autorisations. Modifiez le fichier de configuration nginx.conf et configurez le port d'écoute et le nom de domaine / adresse IP. Démarrez le service Nginx. Les erreurs communes doivent être prêtées à prêter attention, telles que les problèmes de dépendance, les conflits de port et les erreurs de fichiers de configuration. L'optimisation des performances doit être ajustée en fonction de la situation spécifique, comme l'activation du cache et l'ajustement du nombre de processus de travail.
