PHP 数据结构 算法 三元组 Triplet_PHP
/**
* 三元组 Triplet
*
*/
class Triplet
{
private $_data = null;
// 初始化三元组
public function init($val1,$val2,$val3)
{
$this->_data[0] = $val1;
$this->_data[1] = $val2;
$this->_data[2] = $val3;
return true;
}
// 销毁三元组
public function destroy()
{
unset($this->_data);
return true;
}
// 返回第$key的值
public function get($key)
{
if($key 3) return false;
return $this->_data[$key - 1];
}
// 设置第$key元的值为$val
public function put($key,$val)
{
if($key 3) return false;
$this->_data[$key - 1] = $val;
return true;
}
// 是否按升序排序
public function isAscending()
{
return ($this->_data[0] _data[1]) && ($this->_data[1] _data[2]);
}
// 是否按降序排序
public function isDescending()
{
return ($this->_data[0] >= $this->_data[1]) && ($this->_data[1] >= $this->_data[2]);
}
// 获取最大值
public function max()
{
return ($this->_data[0] >= $this->_data[1])? ($this->_data[0] >= $this->_data[2])? $this->_data[0] : $this->_data[2] : ($this->_data[1] >= $this->_data[2])? $this->_data[1] : $this->_data[2];
}
// 获取最小值
public function min()
{
return ($this->_data[0] _data[1])? ($this->_data[0] _data[2])? $this->_data[0] : $this->_data[2] : ($this->_data[1] _data[2])? $this->_data[1] : $this->_data[2];
}
}
//
$objTriplet = new Triplet();
echo "init:";var_dump($objTriplet->init(1,2,3)); echo "
";
echo "get 1:";var_dump($objTriplet->get(1)); echo "
";
echo "get 4:";var_dump($objTriplet->get(4)); echo "
"; // false
echo "put 3,4:";var_dump($objTriplet->put(3,4)); echo "
";
echo "max:";var_dump($objTriplet->max()); echo "
";
echo "min:";var_dump($objTriplet->min()); echo "
";
echo "isAscending:";var_dump($objTriplet->isAscending()); echo "
";
echo "isDescending:";var_dump($objTriplet->isDescending()); echo "
";
?>

Outils d'IA chauds

Undresser.AI Undress
Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover
Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool
Images de déshabillage gratuites

Clothoff.io
Dissolvant de vêtements AI

AI Hentai Generator
Générez AI Hentai gratuitement.

Article chaud

Outils chauds

Bloc-notes++7.3.1
Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise
Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1
Puissant environnement de développement intégré PHP

Dreamweaver CS6
Outils de développement Web visuel

SublimeText3 version Mac
Logiciel d'édition de code au niveau de Dieu (SublimeText3)

Sujets chauds



Écrit ci-dessus et compréhension personnelle de l'auteur : À l'heure actuelle, dans l'ensemble du système de conduite autonome, le module de perception joue un rôle essentiel. Le véhicule autonome roulant sur la route ne peut obtenir des résultats de perception précis que via le module de perception en aval. dans le système de conduite autonome, prend des jugements et des décisions comportementales opportuns et corrects. Actuellement, les voitures dotées de fonctions de conduite autonome sont généralement équipées d'une variété de capteurs d'informations de données, notamment des capteurs de caméra à vision panoramique, des capteurs lidar et des capteurs radar à ondes millimétriques pour collecter des informations selon différentes modalités afin d'accomplir des tâches de perception précises. L'algorithme de perception BEV basé sur la vision pure est privilégié par l'industrie en raison de son faible coût matériel et de sa facilité de déploiement, et ses résultats peuvent être facilement appliqués à diverses tâches en aval.

Les défis courants rencontrés par les algorithmes d'apprentissage automatique en C++ incluent la gestion de la mémoire, le multithread, l'optimisation des performances et la maintenabilité. Les solutions incluent l'utilisation de pointeurs intelligents, de bibliothèques de threads modernes, d'instructions SIMD et de bibliothèques tierces, ainsi que le respect des directives de style de codage et l'utilisation d'outils d'automatisation. Des cas pratiques montrent comment utiliser la bibliothèque Eigen pour implémenter des algorithmes de régression linéaire, gérer efficacement la mémoire et utiliser des opérations matricielles hautes performances.

La couche inférieure de la fonction de tri C++ utilise le tri par fusion, sa complexité est O(nlogn) et propose différents choix d'algorithmes de tri, notamment le tri rapide, le tri par tas et le tri stable.

Lors de l'utilisation de structures de données complexes en Java, Comparator est utilisé pour fournir un mécanisme de comparaison flexible. Les étapes spécifiques comprennent : la définition d’une classe de comparaison et la réécriture de la méthode de comparaison pour définir la logique de comparaison. Créez une instance de comparaison. Utilisez la méthode Collections.sort, en transmettant les instances de collection et de comparateur.

La convergence de l’intelligence artificielle (IA) et des forces de l’ordre ouvre de nouvelles possibilités en matière de prévention et de détection de la criminalité. Les capacités prédictives de l’intelligence artificielle sont largement utilisées dans des systèmes tels que CrimeGPT (Crime Prediction Technology) pour prédire les activités criminelles. Cet article explore le potentiel de l’intelligence artificielle dans la prédiction de la criminalité, ses applications actuelles, les défis auxquels elle est confrontée et les éventuelles implications éthiques de cette technologie. Intelligence artificielle et prédiction de la criminalité : les bases CrimeGPT utilise des algorithmes d'apprentissage automatique pour analyser de grands ensembles de données, identifiant des modèles qui peuvent prédire où et quand les crimes sont susceptibles de se produire. Ces ensembles de données comprennent des statistiques historiques sur la criminalité, des informations démographiques, des indicateurs économiques, des tendances météorologiques, etc. En identifiant les tendances qui pourraient échapper aux analystes humains, l'intelligence artificielle peut donner du pouvoir aux forces de l'ordre.

01Aperçu des perspectives Actuellement, il est difficile d'atteindre un équilibre approprié entre efficacité de détection et résultats de détection. Nous avons développé un algorithme YOLOv5 amélioré pour la détection de cibles dans des images de télédétection optique haute résolution, en utilisant des pyramides de caractéristiques multicouches, des stratégies de têtes de détection multiples et des modules d'attention hybrides pour améliorer l'effet du réseau de détection de cibles dans les images de télédétection optique. Selon l'ensemble de données SIMD, le mAP du nouvel algorithme est 2,2 % meilleur que YOLOv5 et 8,48 % meilleur que YOLOX, permettant ainsi d'obtenir un meilleur équilibre entre les résultats de détection et la vitesse. 02 Contexte et motivation Avec le développement rapide de la technologie de télédétection, les images de télédétection optique à haute résolution ont été utilisées pour décrire de nombreux objets à la surface de la Terre, notamment des avions, des voitures, des bâtiments, etc. Détection d'objets dans l'interprétation d'images de télédétection

1. Contexte de la construction de la plateforme 58 Portraits Tout d'abord, je voudrais partager avec vous le contexte de la construction de la plateforme 58 Portraits. 1. La pensée traditionnelle de la plate-forme de profilage traditionnelle ne suffit plus. La création d'une plate-forme de profilage des utilisateurs s'appuie sur des capacités de modélisation d'entrepôt de données pour intégrer les données de plusieurs secteurs d'activité afin de créer des portraits d'utilisateurs précis. Elle nécessite également l'exploration de données pour comprendre le comportement et les intérêts des utilisateurs. et besoins, et fournir des capacités côté algorithmes ; enfin, il doit également disposer de capacités de plate-forme de données pour stocker, interroger et partager efficacement les données de profil utilisateur et fournir des services de profil. La principale différence entre une plate-forme de profilage d'entreprise auto-construite et une plate-forme de profilage de middle-office est que la plate-forme de profilage auto-construite dessert un seul secteur d'activité et peut être personnalisée à la demande. La plate-forme de mid-office dessert plusieurs secteurs d'activité et est complexe ; modélisation et offre des fonctionnalités plus générales. 2.58 Portraits d'utilisateurs de l'arrière-plan de la construction du portrait sur la plate-forme médiane 58

Les structures de données et les algorithmes sont à la base du développement Java. Cet article explore en profondeur les structures de données clés (telles que les tableaux, les listes chaînées, les arbres, etc.) et les algorithmes (tels que le tri, la recherche, les algorithmes graphiques, etc.) en Java. Ces structures sont illustrées par des exemples pratiques, notamment l'utilisation de tableaux pour stocker les scores, de listes chaînées pour gérer les listes de courses, de piles pour implémenter la récursion, de files d'attente pour synchroniser les threads, ainsi que d'arbres et de tables de hachage pour une recherche et une authentification rapides. Comprendre ces concepts vous permet d'écrire du code Java efficace et maintenable.
