


Une revue des modèles d'apprentissage profond : applications pour l'IRM 3D et la tomodensitométrie
L'une des principales différences entre les données d'imagerie médicale et les autres images du quotidien est qu'elles sont généralement en 3D, en particulier lorsqu'il s'agit de données de la série DICOM. Les images DICOM sont composées de plusieurs tranches 2D et sont utilisées pour numériser ou représenter des parties spécifiques du corps
Dans cet article, nous présenterons 6 architectures de réseaux neuronaux pour entraîner des modèles d'apprentissage en profondeur afin de résoudre des problèmes avec des données médicales 3D
3d U-Net
3D U-Net est un puissant modèle de segmentation d'images médicales, qui étend le modèle U-Net classique à la segmentation 3D et comprend un chemin d'encodage et un chemin de décodage
3D U-Net Lors du traitement d'images volumétriques, des informations contextuelles est capturé via des chemins de codage et un positionnement précis est obtenu grâce à des chemins de décodage, démontrant des capacités efficaces de traitement des caractéristiques 3D
V-Net
V-Net est une méthode pour les images volumétriques. Réseau neuronal convolutionnel 3D segmenté, qui utilise la pleine résolution Convolutions 3D et est donc plus coûteux en calcul que U-Net
HighResNet
Ce modèle passe par une série de convolutions 3D avec des connexions résiduelles La couche cumulative est entraînée de bout en bout et peut traiter l'intégralité de l'image 3D simultanément
EfficientNet3D
Bien que les améliorations 3D d'EfficientNet ne soient pas aussi largement utilisées pour la segmentation 3D que U-Net ou V-Net, elles peuvent être utilisées dans des situations où les ressources informatiques sont limitées. Ensuite, c'est une option qui vaut la peine. étant donné qu'il présente un bon équilibre entre coût de calcul et performances
Attention U-Net
Cette variante est basée sur U-Net, qui introduit un mécanisme de force d'attention qui permet au réseau de se concentrer sur des parties spécifiques de l'image pertinent pour la tâche actuelle
DeepMedic
Ce CNN 3D utilise deux chemins, dont l'un est en résolution normale et l'autre sous-échantillonne l'entrée pour exploiter des informations contextuelles locales et plus larges
Résumé
Dans cet article , nous avons exploré certains des modèles d'apprentissage profond utilisés dans le secteur de l'imagerie médicale pour traiter les IRM et tomodensitométries 3D. Ces réseaux de neurones sont conçus pour recevoir des données 3D en entrée afin d'apprendre les caractéristiques complexes de parties spécifiques du corps de la série DICOM
Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Outils d'IA chauds

Undresser.AI Undress
Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover
Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool
Images de déshabillage gratuites

Clothoff.io
Dissolvant de vêtements AI

AI Hentai Generator
Générez AI Hentai gratuitement.

Article chaud

Outils chauds

Bloc-notes++7.3.1
Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise
Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1
Puissant environnement de développement intégré PHP

Dreamweaver CS6
Outils de développement Web visuel

SublimeText3 version Mac
Logiciel d'édition de code au niveau de Dieu (SublimeText3)

Sujets chauds

BERT est un modèle de langage d'apprentissage profond pré-entraîné proposé par Google en 2018. Le nom complet est BidirectionnelEncoderRepresentationsfromTransformers, qui est basé sur l'architecture Transformer et présente les caractéristiques d'un codage bidirectionnel. Par rapport aux modèles de codage unidirectionnels traditionnels, BERT peut prendre en compte les informations contextuelles en même temps lors du traitement du texte, de sorte qu'il fonctionne bien dans les tâches de traitement du langage naturel. Sa bidirectionnalité permet à BERT de mieux comprendre les relations sémantiques dans les phrases, améliorant ainsi la capacité expressive du modèle. Grâce à des méthodes de pré-formation et de réglage fin, BERT peut être utilisé pour diverses tâches de traitement du langage naturel, telles que l'analyse des sentiments, la dénomination

Les fonctions d'activation jouent un rôle crucial dans l'apprentissage profond. Elles peuvent introduire des caractéristiques non linéaires dans les réseaux neuronaux, permettant ainsi au réseau de mieux apprendre et simuler des relations entrées-sorties complexes. La sélection et l'utilisation correctes des fonctions d'activation ont un impact important sur les performances et les résultats de formation des réseaux de neurones. Cet article présentera quatre fonctions d'activation couramment utilisées : Sigmoid, Tanh, ReLU et Softmax, à partir de l'introduction, des scénarios d'utilisation, des avantages, Les inconvénients et les solutions d'optimisation sont abordés pour vous fournir une compréhension complète des fonctions d'activation. 1. Fonction sigmoïde Introduction à la formule de la fonction SIgmoïde : La fonction sigmoïde est une fonction non linéaire couramment utilisée qui peut mapper n'importe quel nombre réel entre 0 et 1. Il est généralement utilisé pour unifier le

Écrit précédemment, nous discutons aujourd'hui de la manière dont la technologie d'apprentissage profond peut améliorer les performances du SLAM (localisation et cartographie simultanées) basé sur la vision dans des environnements complexes. En combinant des méthodes d'extraction de caractéristiques approfondies et de correspondance de profondeur, nous introduisons ici un système SLAM visuel hybride polyvalent conçu pour améliorer l'adaptation dans des scénarios difficiles tels que des conditions de faible luminosité, un éclairage dynamique, des zones faiblement texturées et une gigue importante. Notre système prend en charge plusieurs modes, notamment les configurations étendues monoculaire, stéréo, monoculaire-inertielle et stéréo-inertielle. En outre, il analyse également comment combiner le SLAM visuel avec des méthodes d’apprentissage profond pour inspirer d’autres recherches. Grâce à des expériences approfondies sur des ensembles de données publiques et des données auto-échantillonnées, nous démontrons la supériorité du SL-SLAM en termes de précision de positionnement et de robustesse du suivi.

L'intégration d'espace latent (LatentSpaceEmbedding) est le processus de mappage de données de grande dimension vers un espace de faible dimension. Dans le domaine de l'apprentissage automatique et de l'apprentissage profond, l'intégration d'espace latent est généralement un modèle de réseau neuronal qui mappe les données d'entrée de grande dimension dans un ensemble de représentations vectorielles de basse dimension. Cet ensemble de vecteurs est souvent appelé « vecteurs latents » ou « latents ». encodages". Le but de l’intégration de l’espace latent est de capturer les caractéristiques importantes des données et de les représenter sous une forme plus concise et compréhensible. Grâce à l'intégration de l'espace latent, nous pouvons effectuer des opérations telles que la visualisation, la classification et le regroupement de données dans un espace de faible dimension pour mieux comprendre et utiliser les données. L'intégration d'espace latent a de nombreuses applications dans de nombreux domaines, tels que la génération d'images, l'extraction de caractéristiques, la réduction de dimensionnalité, etc. L'intégration de l'espace latent est le principal

Dans la vague actuelle de changements technologiques rapides, l'intelligence artificielle (IA), l'apprentissage automatique (ML) et l'apprentissage profond (DL) sont comme des étoiles brillantes, à la tête de la nouvelle vague des technologies de l'information. Ces trois mots apparaissent fréquemment dans diverses discussions de pointe et applications pratiques, mais pour de nombreux explorateurs novices dans ce domaine, leurs significations spécifiques et leurs connexions internes peuvent encore être entourées de mystère. Alors regardons d'abord cette photo. On constate qu’il existe une corrélation étroite et une relation progressive entre l’apprentissage profond, l’apprentissage automatique et l’intelligence artificielle. Le deep learning est un domaine spécifique du machine learning, et le machine learning

Près de 20 ans se sont écoulés depuis que le concept d'apprentissage profond a été proposé en 2006. L'apprentissage profond, en tant que révolution dans le domaine de l'intelligence artificielle, a donné naissance à de nombreux algorithmes influents. Alors, selon vous, quels sont les 10 meilleurs algorithmes pour l’apprentissage profond ? Voici les meilleurs algorithmes d’apprentissage profond, à mon avis. Ils occupent tous une position importante en termes d’innovation, de valeur d’application et d’influence. 1. Contexte du réseau neuronal profond (DNN) : Le réseau neuronal profond (DNN), également appelé perceptron multicouche, est l'algorithme d'apprentissage profond le plus courant lorsqu'il a été inventé pour la première fois, jusqu'à récemment en raison du goulot d'étranglement de la puissance de calcul. années, puissance de calcul, La percée est venue avec l'explosion des données. DNN est un modèle de réseau neuronal qui contient plusieurs couches cachées. Dans ce modèle, chaque couche transmet l'entrée à la couche suivante et

Convolutional Neural Network (CNN) et Transformer sont deux modèles d'apprentissage en profondeur différents qui ont montré d'excellentes performances sur différentes tâches. CNN est principalement utilisé pour les tâches de vision par ordinateur telles que la classification d'images, la détection de cibles et la segmentation d'images. Il extrait les caractéristiques locales de l'image via des opérations de convolution et effectue une réduction de dimensionnalité des caractéristiques et une invariance spatiale via des opérations de pooling. En revanche, Transformer est principalement utilisé pour les tâches de traitement du langage naturel (NLP) telles que la traduction automatique, la classification de texte et la reconnaissance vocale. Il utilise un mécanisme d'auto-attention pour modéliser les dépendances dans des séquences, évitant ainsi le calcul séquentiel dans les réseaux neuronaux récurrents traditionnels. Bien que ces deux modèles soient utilisés pour des tâches différentes, ils présentent des similitudes dans la modélisation des séquences.

RMSprop est un optimiseur largement utilisé pour mettre à jour les poids des réseaux de neurones. Il a été proposé par Geoffrey Hinton et al. en 2012 et est le prédécesseur de l'optimiseur Adam. L'émergence de l'optimiseur RMSprop vise principalement à résoudre certains problèmes rencontrés dans l'algorithme de descente de gradient SGD, tels que la disparition de gradient et l'explosion de gradient. En utilisant l'optimiseur RMSprop, le taux d'apprentissage peut être ajusté efficacement et les pondérations mises à jour de manière adaptative, améliorant ainsi l'effet de formation du modèle d'apprentissage en profondeur. L'idée principale de l'optimiseur RMSprop est d'effectuer une moyenne pondérée des gradients afin que les gradients à différents pas de temps aient des effets différents sur les mises à jour de poids. Plus précisément, RMSprop calcule le carré de chaque paramètre
