


Solutions intelligentes : assurer la sécurité des données et prévenir les fuites et les pertes
La cybersécurité est un combat permanent, avec de nouvelles menaces qui émergent chaque jour et les responsables de la sécurité de l'information (RSSI) qui travaillent dur pour suivre le rythme. Ils étaient sous la pression de l'alarme et l'équipe était confrontée à des défis. En conséquence, les RSSI et leurs équipes sont soumis à une pression constante pour trouver des moyens nouveaux et innovants de protéger leur organisation contre les dangers. Une façon de lutter contre ce phénomène consiste à exploiter la puissance de l’intelligence artificielle (IA). L'IA peut aider à identifier les menaces potentielles, à automatiser les tâches répétitives et à libérer des ressources humaines afin que les RSSI puissent se concentrer sur des initiatives plus stratégiques. Cependant, il est important de rappeler que l’IA n’est pas une solution magique qui remplace le besoin d’expertise et d’expérience humaine en matière de cybersécurité. Au lieu de cela, il doit être considéré comme un outil qui peut aider les RSSI et leurs équipes à mieux gérer le paysage croissant de la cybersécurité.
Les violations de données sont de plus en plus courantes et peuvent en conséquence être dévastatrices pour les entreprises. Aux coûts directs, tels que les notifications et la surveillance du crédit, s’ajoutent des coûts indirects, tels que la perte d’activité et l’atteinte à la réputation. Investir dans des solutions qui détectent et contiennent automatiquement les violations de données peut contribuer à réduire le fardeau des RSSI et des équipes de sécurité, et l'apprentissage automatique est l'une de ces solutions.
Comment fonctionne l'apprentissage automatique
L'apprentissage automatique est une technologie d'intelligence artificielle qui permet aux ordinateurs d'apprendre à partir de données sans programmation explicite. En utilisant les données pour entraîner des modèles, les algorithmes d’apprentissage automatique peuvent faire des prédictions et des recommandations. En termes de sécurité des données, l'apprentissage automatique peut créer des modèles pour détecter les anomalies pouvant indiquer une violation de données
Supposons que vous disposiez d'un ensemble de données d'enregistrements de connexion des employés, vous pouvez utiliser des algorithmes d'apprentissage automatique pour créer des modèles permettant de prédire la légitimité des tentatives de connexion, et signaler les anomalies Tentative de connexion pour une enquête plus approfondie
Comment l'apprentissage automatique prévient-il les violations de données
À bien des égards, l'apprentissage automatique peut prévenir efficacement les violations de données ? Une approche consiste à stopper les attaques en identifiant les vulnérabilités du système avant que les attaquants aient la possibilité de les exploiter. Une autre approche consiste à surveiller l’activité des utilisateurs et à signaler les comportements suspects pouvant indiquer une tentative de violation. Enfin, une fois qu'une vulnérabilité est découverte, l'apprentissage automatique peut être rapidement appliqué pour freiner la propagation de la vulnérabilité.
Qu'est-ce que le credential stuffing ? accès à un compte utilisateur. Les attaquants exploitent souvent les listes d'informations d'identification obtenues lors de violations de données dans d'autres organisations pour compromettre les comptes des victimes à grande échelle. De telles attaques sont souvent automatisées, permettant à un seul attaquant de compromettre des milliers de comptes en peu de temps
L'intelligence artificielle joue un rôle essentiel dans la détection et la prévention des attaques de type credential stuffing en identifiant des modèles de comportement des utilisateurs, aidant ainsi à identifier les activités inhabituelles qui peuvent indiquer les tentatives d'attaque ou leur réussite
Le rôle de l'intelligence artificielle dans l'adaptation est essentiel, notamment dans la détection et la prévention des attaques de credential stuffing. En analysant les modèles de comportement des utilisateurs, l’IA peut identifier une activité anormale pouvant indiquer une tentative ou une attaque réussie. Par exemple, si un employé pendant les heures normales de travail commence soudainement à accéder à des bases de données sensibles à 3 heures du matin, ou si un employé de l'Ohio se connecte depuis la Chine, ces comportements pourraient être le signe d'un comportement néfaste. En surveillant en permanence le comportement des utilisateurs et en signalant les activités anormales, l'IA peut aider les organisations à se protéger contre les attaques de credential stuffing et autres menaces émergentes.
Pourquoi investir dans l'apprentissage automatique ?
Pour toute entreprise cherchant à protéger ses données contre la perte, investir dans l'apprentissage automatique est une solution. choix intelligent. Non seulement l’apprentissage automatique peut stopper les violations de données avant qu’elles ne se produisent, mais il peut également vous aider à contrôler la perte de données lorsqu’une violation se produit. De plus, investir dans l'apprentissage automatique peut également montrer aux clients que vous prenez leur sécurité au sérieux et réduire la charge de travail de votre RSSI et de votre équipe de sécurité.
Avantages de l'utilisation de l'apprentissage automatique pour la sécurité des données
L'utilisation de l'apprentissage automatique pour la sécurité des données présente de nombreux avantages, notamment :
- Améliorer la précision : les humains sont voués à faire des erreurs. Nous sommes fatigués, nous faisons des erreurs et parfois nous négligeons certaines choses. Les algorithmes d’apprentissage automatique, en revanche, ne sont pas soumis à ces mêmes limitations. Cela signifie qu’ils peuvent améliorer la précision de l’identification des menaces potentielles.
- Détection plus rapide : une fois qu'un modèle d'apprentissage automatique est formé, il analyse les données beaucoup plus rapidement que les humains. Cela signifie que les menaces potentielles peuvent être identifiées et contenues plus rapidement.
- Évolutivité : la quantité de données que les entreprises doivent gérer ne fera qu'augmenter. Les algorithmes d’apprentissage automatique peuvent traiter de grandes quantités de données plus efficacement que les humains, ce qui les rend parfaitement adaptés aux environnements Big Data.
- Temps de réponse amélioré : plus vous identifiez rapidement les menaces potentielles, plus votre temps de réponse est rapide. En utilisant l’apprentissage automatique pour sécuriser les données, les entreprises peuvent minimiser les dommages causés par une violation de données.
En tirant parti de l'intelligence artificielle pour identifier des modèles de comportement des utilisateurs, les organisations peuvent repérer des activités anormales qui pourraient laisser présager une tentative ou une attaque réussie. L’intelligence artificielle joue un rôle clé dans la protection des organisations contre les attaques de type credential stuffing et autres menaces émergentes. Même si les violations de données sont de plus en plus courantes, des solutions existent. Investir dans des solutions automatisées de détection et de confinement des violations de données, telles que l'apprentissage automatique, peut réduire la charge des RSSI et des équipes de sécurité et minimiser les dommages causés par une violation
Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Outils d'IA chauds

Undresser.AI Undress
Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover
Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool
Images de déshabillage gratuites

Clothoff.io
Dissolvant de vêtements AI

AI Hentai Generator
Générez AI Hentai gratuitement.

Article chaud

Outils chauds

Bloc-notes++7.3.1
Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise
Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1
Puissant environnement de développement intégré PHP

Dreamweaver CS6
Outils de développement Web visuel

SublimeText3 version Mac
Logiciel d'édition de code au niveau de Dieu (SublimeText3)

Sujets chauds

Ce site a rapporté le 27 juin que Jianying est un logiciel de montage vidéo développé par FaceMeng Technology, une filiale de ByteDance. Il s'appuie sur la plateforme Douyin et produit essentiellement du contenu vidéo court pour les utilisateurs de la plateforme. Il est compatible avec iOS, Android et. Windows, MacOS et autres systèmes d'exploitation. Jianying a officiellement annoncé la mise à niveau de son système d'adhésion et a lancé un nouveau SVIP, qui comprend une variété de technologies noires d'IA, telles que la traduction intelligente, la mise en évidence intelligente, l'emballage intelligent, la synthèse humaine numérique, etc. En termes de prix, les frais mensuels pour le clipping SVIP sont de 79 yuans, les frais annuels sont de 599 yuans (attention sur ce site : équivalent à 49,9 yuans par mois), l'abonnement mensuel continu est de 59 yuans par mois et l'abonnement annuel continu est de 59 yuans par mois. est de 499 yuans par an (équivalent à 41,6 yuans par mois) . En outre, le responsable de Cut a également déclaré que afin d'améliorer l'expérience utilisateur, ceux qui se sont abonnés au VIP d'origine

Améliorez la productivité, l’efficacité et la précision des développeurs en intégrant une génération et une mémoire sémantique améliorées par la récupération dans les assistants de codage IA. Traduit de EnhancingAICodingAssistantswithContextUsingRAGandSEM-RAG, auteur JanakiramMSV. Bien que les assistants de programmation d'IA de base soient naturellement utiles, ils ne parviennent souvent pas à fournir les suggestions de code les plus pertinentes et les plus correctes, car ils s'appuient sur une compréhension générale du langage logiciel et des modèles d'écriture de logiciels les plus courants. Le code généré par ces assistants de codage est adapté à la résolution des problèmes qu’ils sont chargés de résoudre, mais n’est souvent pas conforme aux normes, conventions et styles de codage des équipes individuelles. Cela aboutit souvent à des suggestions qui doivent être modifiées ou affinées pour que le code soit accepté dans l'application.

Pour en savoir plus sur l'AIGC, veuillez visiter : 51CTOAI.x Community https://www.51cto.com/aigc/Translator|Jingyan Reviewer|Chonglou est différent de la banque de questions traditionnelle que l'on peut voir partout sur Internet. nécessite de sortir des sentiers battus. Les grands modèles linguistiques (LLM) sont de plus en plus importants dans les domaines de la science des données, de l'intelligence artificielle générative (GenAI) et de l'intelligence artificielle. Ces algorithmes complexes améliorent les compétences humaines et stimulent l’efficacité et l’innovation dans de nombreux secteurs, devenant ainsi la clé permettant aux entreprises de rester compétitives. LLM a un large éventail d'applications. Il peut être utilisé dans des domaines tels que le traitement du langage naturel, la génération de texte, la reconnaissance vocale et les systèmes de recommandation. En apprenant de grandes quantités de données, LLM est capable de générer du texte

Les grands modèles linguistiques (LLM) sont formés sur d'énormes bases de données textuelles, où ils acquièrent de grandes quantités de connaissances du monde réel. Ces connaissances sont intégrées à leurs paramètres et peuvent ensuite être utilisées en cas de besoin. La connaissance de ces modèles est « réifiée » en fin de formation. À la fin de la pré-formation, le modèle arrête effectivement d’apprendre. Alignez ou affinez le modèle pour apprendre à exploiter ces connaissances et répondre plus naturellement aux questions des utilisateurs. Mais parfois, la connaissance du modèle ne suffit pas, et bien que le modèle puisse accéder à du contenu externe via RAG, il est considéré comme bénéfique de l'adapter à de nouveaux domaines grâce à un réglage fin. Ce réglage fin est effectué à l'aide de la contribution d'annotateurs humains ou d'autres créations LLM, où le modèle rencontre des connaissances supplémentaires du monde réel et les intègre.

L'ensemble de données ScienceAI Question Answering (QA) joue un rôle essentiel dans la promotion de la recherche sur le traitement du langage naturel (NLP). Des ensembles de données d'assurance qualité de haute qualité peuvent non seulement être utilisés pour affiner les modèles, mais également évaluer efficacement les capacités des grands modèles linguistiques (LLM), en particulier la capacité à comprendre et à raisonner sur les connaissances scientifiques. Bien qu’il existe actuellement de nombreux ensembles de données scientifiques d’assurance qualité couvrant la médecine, la chimie, la biologie et d’autres domaines, ces ensembles de données présentent encore certaines lacunes. Premièrement, le formulaire de données est relativement simple, et la plupart sont des questions à choix multiples. Elles sont faciles à évaluer, mais limitent la plage de sélection des réponses du modèle et ne peuvent pas tester pleinement la capacité du modèle à répondre aux questions scientifiques. En revanche, les questions et réponses ouvertes

Editeur | KX Dans le domaine de la recherche et du développement de médicaments, il est crucial de prédire avec précision et efficacité l'affinité de liaison des protéines et des ligands pour le criblage et l'optimisation des médicaments. Cependant, les études actuelles ne prennent pas en compte le rôle important des informations sur la surface moléculaire dans les interactions protéine-ligand. Sur cette base, des chercheurs de l'Université de Xiamen ont proposé un nouveau cadre d'extraction de caractéristiques multimodales (MFE), qui combine pour la première fois des informations sur la surface des protéines, la structure et la séquence 3D, et utilise un mécanisme d'attention croisée pour comparer différentes modalités. alignement. Les résultats expérimentaux démontrent que cette méthode atteint des performances de pointe dans la prédiction des affinités de liaison protéine-ligand. De plus, les études d’ablation démontrent l’efficacité et la nécessité des informations sur la surface des protéines et de l’alignement des caractéristiques multimodales dans ce cadre. Les recherches connexes commencent par "S

L'apprentissage automatique est une branche importante de l'intelligence artificielle qui donne aux ordinateurs la possibilité d'apprendre à partir de données et d'améliorer leurs capacités sans être explicitement programmés. L'apprentissage automatique a un large éventail d'applications dans divers domaines, de la reconnaissance d'images et du traitement du langage naturel aux systèmes de recommandation et à la détection des fraudes, et il change notre façon de vivre. Il existe de nombreuses méthodes et théories différentes dans le domaine de l'apprentissage automatique, parmi lesquelles les cinq méthodes les plus influentes sont appelées les « Cinq écoles d'apprentissage automatique ». Les cinq grandes écoles sont l’école symbolique, l’école connexionniste, l’école évolutionniste, l’école bayésienne et l’école analogique. 1. Le symbolisme, également connu sous le nom de symbolisme, met l'accent sur l'utilisation de symboles pour le raisonnement logique et l'expression des connaissances. Cette école de pensée estime que l'apprentissage est un processus de déduction inversée, à travers les connaissances existantes.

Selon les informations de ce site le 1er août, SK Hynix a publié un article de blog aujourd'hui (1er août), annonçant sa participation au Global Semiconductor Memory Summit FMS2024 qui se tiendra à Santa Clara, Californie, États-Unis, du 6 au 8 août, présentant de nombreuses nouvelles technologies de produit. Introduction au Future Memory and Storage Summit (FutureMemoryandStorage), anciennement Flash Memory Summit (FlashMemorySummit) principalement destiné aux fournisseurs de NAND, dans le contexte de l'attention croissante portée à la technologie de l'intelligence artificielle, cette année a été rebaptisée Future Memory and Storage Summit (FutureMemoryandStorage) pour invitez les fournisseurs de DRAM et de stockage et bien d’autres joueurs. Nouveau produit SK hynix lancé l'année dernière
