Maison développement back-end Tutoriel Python Comment effectuer une classification d'images sur des images à l'aide de Python

Comment effectuer une classification d'images sur des images à l'aide de Python

Aug 17, 2023 pm 06:42 PM
python 图片 图像分类

Comment effectuer une classification dimages sur des images à laide de Python

Comment classer des images à l'aide de Python

Avec le développement des domaines du traitement d'images et de l'apprentissage automatique, la classification d'images est devenue une tâche importante. En tant que langage de programmation flexible et puissant, Python fournit de nombreux outils et bibliothèques pour rendre la classification des images plus facile et plus efficace. Cet article expliquera comment utiliser Python pour classer les images et fournira des exemples de code pertinents.

  1. Préparation :
    Avant de commencer, nous devons installer la bibliothèque Python correspondante. Parmi elles, les plus importantes sont les bibliothèques OpenCV et Keras. Vous pouvez l'installer via pip en utilisant la commande suivante :
pip install opencv-python
pip install keras
Copier après la connexion

De plus, nous devons également télécharger un modèle pré-entraîné adapté à la classification des images. Dans cet article, nous utiliserons le modèle ResNet50. Vous pouvez le télécharger en utilisant la commande suivante :

python -m keras.applications.resnet50
Copier après la connexion
  1. Charger les données d'image :
    Tout d'abord, nous devons charger les données d'image dans le programme. Nous pouvons utiliser la fonction cv2.imread() de la bibliothèque OpenCV pour lire les fichiers image. Voici l'exemple de code pour charger les données d'image :
import cv2

def load_image(image_path):
    img = cv2.imread(image_path)
    img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)   # 转换为RGB格式
    return img

image = load_image('image.jpg')
Copier après la connexion
  1. Prétraitez les données d'image :
    Avant de procéder à la classification des images, nous devons prétraiter les données d'image pour les adapter à notre modèle. En règle générale, nous effectuons une mise à l'échelle, une régularisation ou un recadrage des images. Voici l'exemple de code pour mettre à l'échelle et régulariser l'image :
import cv2
import numpy as np

def preprocess_image(image):
    image = cv2.resize(image, (224, 224))   # 缩放图像为224x224像素
    image = image.astype("float32")   # 将图像数据类型转换为float32
    image /= 255   # 归一化图像数据
    return image

preprocessed_image = preprocess_image(image)
Copier après la connexion
  1. Chargement du modèle pré-entraîné :
    Avant de classer l'image, nous devons charger le modèle pré-entraîné. Dans cet article, nous utiliserons le modèle ResNet50. Voici l'exemple de code pour charger le modèle pré-entraîné :
from keras.applications.resnet50 import ResNet50
from keras.preprocessing import image
from keras.applications.resnet50 import preprocess_input, decode_predictions
import numpy as np

model = ResNet50(weights='imagenet')
Copier après la connexion
  1. Effectuer la classification des images :
    Maintenant, nous sommes prêts à classer les images. Nous utiliserons le modèle chargé pour prédire les données d'image prétraitées et générer les résultats de classification. Voici l'exemple de code pour la classification des images :
def classify_image(image):
    x = image[np.newaxis, ...]   # 将图像数据加一维以适应模型输入
    predictions = model.predict(x)   # 进行图像分类
    decoded_predictions = decode_predictions(predictions, top=3)[0]   # 解码预测结果
    return decoded_predictions

predictions = classify_image(preprocessed_image)
print(predictions)
Copier après la connexion
  1. Explication des résultats :
    Enfin, nous expliquerons les résultats de la prédiction. Sur la base du modèle pré-entraîné que nous avons chargé, le modèle renverra les trois principales prédictions et leurs probabilités correspondantes. Voici un exemple de code qui explique les résultats de la prédiction :
def explain_predictions(predictions):
    for pred in predictions:
        print(f"类别:{pred[1]},概率:{pred[2]*100}%")

explain_predictions(predictions)
Copier après la connexion

À ce stade, nous avons terminé le processus de classification des images à l'aide de Python. En chargeant le modèle pré-entraîné et en prétraitant les données d'image, nous pouvons facilement effectuer une classification d'images et interpréter les résultats de prédiction.

Résumé :
Cet article explique comment utiliser Python pour effectuer une classification d'images sur des images. En installant les bibliothèques OpenCV et Keras, nous pouvons charger et prétraiter les données d'image. À l'aide d'un modèle pré-entraîné, nous pouvons classer les images et interpréter les prédictions. J'espère que cet article pourra aider les lecteurs à comprendre comment utiliser Python pour la classification d'images et fournir une référence pour une exploration plus approfondie dans les domaines du traitement d'images et de l'apprentissage automatique.

Références :

  1. https://docs.opencv.org/master/d6/d00/tutorial_py_root.html
  2. https://keras.io/api/applications/
  3. https://numpy.org / doc/stable/

Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Déclaration de ce site Web
Le contenu de cet article est volontairement contribué par les internautes et les droits d'auteur appartiennent à l'auteur original. Ce site n'assume aucune responsabilité légale correspondante. Si vous trouvez un contenu suspecté de plagiat ou de contrefaçon, veuillez contacter admin@php.cn

Outils d'IA chauds

Undresser.AI Undress

Undresser.AI Undress

Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover

AI Clothes Remover

Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool

Undress AI Tool

Images de déshabillage gratuites

Clothoff.io

Clothoff.io

Dissolvant de vêtements AI

AI Hentai Generator

AI Hentai Generator

Générez AI Hentai gratuitement.

Outils chauds

Bloc-notes++7.3.1

Bloc-notes++7.3.1

Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise

SublimeText3 version chinoise

Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1

Envoyer Studio 13.0.1

Puissant environnement de développement intégré PHP

Dreamweaver CS6

Dreamweaver CS6

Outils de développement Web visuel

SublimeText3 version Mac

SublimeText3 version Mac

Logiciel d'édition de code au niveau de Dieu (SublimeText3)

PHP et Python: exemples de code et comparaison PHP et Python: exemples de code et comparaison Apr 15, 2025 am 12:07 AM

PHP et Python ont leurs propres avantages et inconvénients, et le choix dépend des besoins du projet et des préférences personnelles. 1.Php convient au développement rapide et à la maintenance des applications Web à grande échelle. 2. Python domine le domaine de la science des données et de l'apprentissage automatique.

Python vs JavaScript: communauté, bibliothèques et ressources Python vs JavaScript: communauté, bibliothèques et ressources Apr 15, 2025 am 12:16 AM

Python et JavaScript ont leurs propres avantages et inconvénients en termes de communauté, de bibliothèques et de ressources. 1) La communauté Python est amicale et adaptée aux débutants, mais les ressources de développement frontal ne sont pas aussi riches que JavaScript. 2) Python est puissant dans les bibliothèques de science des données et d'apprentissage automatique, tandis que JavaScript est meilleur dans les bibliothèques et les cadres de développement frontaux. 3) Les deux ont des ressources d'apprentissage riches, mais Python convient pour commencer par des documents officiels, tandis que JavaScript est meilleur avec MDNWEBDOCS. Le choix doit être basé sur les besoins du projet et les intérêts personnels.

Explication détaillée du principe docker Explication détaillée du principe docker Apr 14, 2025 pm 11:57 PM

Docker utilise les fonctionnalités du noyau Linux pour fournir un environnement de fonctionnement d'application efficace et isolé. Son principe de travail est le suivant: 1. Le miroir est utilisé comme modèle en lecture seule, qui contient tout ce dont vous avez besoin pour exécuter l'application; 2. Le Système de fichiers Union (UnionFS) empile plusieurs systèmes de fichiers, ne stockant que les différences, l'économie d'espace et l'accélération; 3. Le démon gère les miroirs et les conteneurs, et le client les utilise pour l'interaction; 4. Les espaces de noms et les CGROUP implémentent l'isolement des conteneurs et les limitations de ressources; 5. Modes de réseau multiples prennent en charge l'interconnexion du conteneur. Ce n'est qu'en comprenant ces concepts principaux que vous pouvez mieux utiliser Docker.

Comment exécuter des programmes dans Terminal Vscode Comment exécuter des programmes dans Terminal Vscode Apr 15, 2025 pm 06:42 PM

Dans VS Code, vous pouvez exécuter le programme dans le terminal via les étapes suivantes: Préparez le code et ouvrez le terminal intégré pour vous assurer que le répertoire de code est cohérent avec le répertoire de travail du terminal. Sélectionnez la commande Run en fonction du langage de programmation (tel que Python de Python your_file_name.py) pour vérifier s'il s'exécute avec succès et résoudre les erreurs. Utilisez le débogueur pour améliorer l'efficacité du débogage.

Python: automatisation, script et gestion des tâches Python: automatisation, script et gestion des tâches Apr 16, 2025 am 12:14 AM

Python excelle dans l'automatisation, les scripts et la gestion des tâches. 1) Automatisation: La sauvegarde du fichier est réalisée via des bibliothèques standard telles que le système d'exploitation et la fermeture. 2) Écriture de script: utilisez la bibliothèque PSUTIL pour surveiller les ressources système. 3) Gestion des tâches: utilisez la bibliothèque de planification pour planifier les tâches. La facilité d'utilisation de Python et la prise en charge de la bibliothèque riche en font l'outil préféré dans ces domaines.

L'extension VScode est-elle malveillante? L'extension VScode est-elle malveillante? Apr 15, 2025 pm 07:57 PM

Les extensions de code vs posent des risques malveillants, tels que la cachette de code malveillant, l'exploitation des vulnérabilités et la masturbation comme des extensions légitimes. Les méthodes pour identifier les extensions malveillantes comprennent: la vérification des éditeurs, la lecture des commentaires, la vérification du code et l'installation avec prudence. Les mesures de sécurité comprennent également: la sensibilisation à la sécurité, les bonnes habitudes, les mises à jour régulières et les logiciels antivirus.

Comment installer nginx dans Centos Comment installer nginx dans Centos Apr 14, 2025 pm 08:06 PM

CENTOS L'installation de Nginx nécessite de suivre les étapes suivantes: Installation de dépendances telles que les outils de développement, le devet PCRE et l'OpenSSL. Téléchargez le package de code source Nginx, dézippez-le et compilez-le et installez-le, et spécifiez le chemin d'installation AS / USR / LOCAL / NGINX. Créez des utilisateurs et des groupes d'utilisateurs de Nginx et définissez les autorisations. Modifiez le fichier de configuration nginx.conf et configurez le port d'écoute et le nom de domaine / adresse IP. Démarrez le service Nginx. Les erreurs communes doivent être prêtées à prêter attention, telles que les problèmes de dépendance, les conflits de port et les erreurs de fichiers de configuration. L'optimisation des performances doit être ajustée en fonction de la situation spécifique, comme l'activation du cache et l'ajustement du nombre de processus de travail.

Qu'est-ce que VScode pour quoi est VScode? Qu'est-ce que VScode pour quoi est VScode? Apr 15, 2025 pm 06:45 PM

VS Code est le code Visual Studio Nom complet, qui est un éditeur de code multiplateforme gratuit et open source et un environnement de développement développé par Microsoft. Il prend en charge un large éventail de langages de programmation et fournit une mise en surbrillance de syntaxe, une complétion automatique du code, des extraits de code et des invites intelligentes pour améliorer l'efficacité de développement. Grâce à un écosystème d'extension riche, les utilisateurs peuvent ajouter des extensions à des besoins et des langues spécifiques, tels que les débogueurs, les outils de mise en forme de code et les intégrations GIT. VS Code comprend également un débogueur intuitif qui aide à trouver et à résoudre rapidement les bogues dans votre code.

See all articles