


Comment effectuer un filtrage dégradé sur des images à l'aide de Python
Comment utiliser Python pour effectuer un filtrage dégradé sur des images
Le filtrage dégradé est une technique couramment utilisée dans le traitement d'images numériques pour détecter les informations de bord et de contour dans les images. En Python, nous pouvons utiliser la bibliothèque OpenCV pour implémenter le filtrage dégradé. Cet article expliquera comment utiliser Python pour effectuer un filtrage dégradé sur les images et joindra des exemples de code pour référence.
Le principe du filtrage dégradé est de déterminer la position du bord en calculant la différence de valeurs de pixels autour du pixel. De manière générale, les bords d'une image sont généralement représentés comme des zones dans lesquelles la valeur de gris de l'image change de manière plus radicale. Par conséquent, le filtrage par dégradé peut trouver des bords en calculant le différentiel de premier ou de deuxième ordre de l'échelle de gris de l'image.
Ce qui suit est un exemple de code pour implémenter le filtrage de dégradé à l'aide de Python et de la bibliothèque OpenCV :
import cv2 import numpy as np # 读取图片 image = cv2.imread('image.jpg', cv2.IMREAD_GRAYSCALE) # 使用Sobel算子计算图像梯度 gradient_x = cv2.Sobel(image, cv2.CV_64F, 1, 0, ksize=3) gradient_y = cv2.Sobel(image, cv2.CV_64F, 0, 1, ksize=3) # 计算梯度幅值 gradient_magnitude = np.sqrt(np.square(gradient_x) + np.square(gradient_y)) # 将梯度幅值映射到0-255的灰度空间 gradient_magnitude = cv2.normalize(gradient_magnitude, None, 0, 255, cv2.NORM_MINMAX, cv2.CV_8U) # 显示原图和梯度图像 cv2.imshow('original', image) cv2.imshow('gradient', gradient_magnitude) cv2.waitKey(0) cv2.destroyAllWindows()
Tout d'abord, nous utilisons la fonction cv2.imread()
pour lire une image en niveaux de gris. Ici, vous devez spécifier le chemin et le mode de lecture de l'image : cv2.IMREAD_GRAYSCALE
signifie lire l'image en mode niveaux de gris. cv2.imread()
函数读取一张灰度图像。这里需要指定图像的路径和读取模式:cv2.IMREAD_GRAYSCALE
表示将图像以灰度模式读取。
接下来,我们使用cv2.Sobel()
函数计算图像的梯度。这里的参数包括输入图像、计算梯度的顺序(x方向或y方向)、导数的阶数、以及Sobel算子的大小。Sobel算子是一种常用的边缘检测算子,通过对图像灰度值进行一阶微分来计算梯度。
然后,我们可以通过对梯度在x和y方向上进行平方和开方的运算,得到梯度幅值。这个操作使用了NumPy库提供的函数np.square()
和np.sqrt()
。
最后,我们将梯度幅值映射到0-255的灰度空间,使用cv2.normalize()
函数进行归一化处理。
最后,我们使用cv2.imshow()
函数显示原图和梯度图像,并使用cv2.waitKey()
和cv2.destroyAllWindows()
函数等待用户的操作和关闭窗口。
通过以上代码,我们可以对输入图像进行梯度滤波并展示结果。如果想要实现其他的梯度滤波算法,可以尝试使用cv2.filter2D()
cv2.Sobel()
pour calculer le dégradé de l'image. Les paramètres incluent ici l'image d'entrée, l'ordre dans lequel le gradient est calculé (direction x ou direction y), l'ordre de la dérivée et la taille de l'opérateur Sobel. L'opérateur Sobel est un opérateur de détection de contour couramment utilisé qui calcule le gradient en effectuant une différenciation de premier ordre sur la valeur de gris de l'image. Ensuite, nous pouvons obtenir l'amplitude du gradient en effectuant des opérations de racine carrée et carrée sur le gradient dans les directions x et y. Cette opération utilise les fonctions np.square()
et np.sqrt()
fournies par la bibliothèque NumPy. 🎜🎜Enfin, nous mappons l'amplitude du dégradé sur l'espace en niveaux de gris de 0 à 255 et utilisons la fonction cv2.normalize()
pour la normalisation. 🎜🎜Enfin, nous utilisons la fonction cv2.imshow()
pour afficher l'image originale et l'image dégradée, et utilisons cv2.waitKey()
et cv2.destroyAllWindows ()La fonction attend l'opération de l'utilisateur et ferme la fenêtre. 🎜🎜Avec le code ci-dessus, nous pouvons effectuer un filtrage dégradé sur l'image d'entrée et afficher les résultats. Si vous souhaitez implémenter d'autres algorithmes de filtrage de gradient, vous pouvez essayer d'utiliser la fonction <code>cv2.filter2D()
, qui fournit une opération de convolution plus flexible. 🎜🎜Le filtrage des dégradés est une technique couramment utilisée dans le traitement des images numériques, qui peut nous aider à extraire des informations sur les bords et les contours des images. J'espère que le contenu de cet article vous sera utile et pourra vous amener à approfondir votre apprentissage et à explorer le domaine du traitement d'image. 🎜Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Outils d'IA chauds

Undresser.AI Undress
Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover
Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool
Images de déshabillage gratuites

Clothoff.io
Dissolvant de vêtements AI

AI Hentai Generator
Générez AI Hentai gratuitement.

Article chaud

Outils chauds

Bloc-notes++7.3.1
Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise
Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1
Puissant environnement de développement intégré PHP

Dreamweaver CS6
Outils de développement Web visuel

SublimeText3 version Mac
Logiciel d'édition de code au niveau de Dieu (SublimeText3)

PHP et Python ont leurs propres avantages et inconvénients, et le choix dépend des besoins du projet et des préférences personnelles. 1.Php convient au développement rapide et à la maintenance des applications Web à grande échelle. 2. Python domine le domaine de la science des données et de l'apprentissage automatique.

Une formation efficace des modèles Pytorch sur les systèmes CentOS nécessite des étapes, et cet article fournira des guides détaillés. 1. Préparation de l'environnement: Installation de Python et de dépendance: le système CentOS préinstalle généralement Python, mais la version peut être plus ancienne. Il est recommandé d'utiliser YUM ou DNF pour installer Python 3 et Mettez PIP: sudoyuMupDatePython3 (ou sudodnfupdatepython3), pip3install-upradepip. CUDA et CUDNN (accélération GPU): Si vous utilisez Nvidiagpu, vous devez installer Cudatool

Python et JavaScript ont leurs propres avantages et inconvénients en termes de communauté, de bibliothèques et de ressources. 1) La communauté Python est amicale et adaptée aux débutants, mais les ressources de développement frontal ne sont pas aussi riches que JavaScript. 2) Python est puissant dans les bibliothèques de science des données et d'apprentissage automatique, tandis que JavaScript est meilleur dans les bibliothèques et les cadres de développement frontaux. 3) Les deux ont des ressources d'apprentissage riches, mais Python convient pour commencer par des documents officiels, tandis que JavaScript est meilleur avec MDNWEBDOCS. Le choix doit être basé sur les besoins du projet et les intérêts personnels.

Activer l'accélération du GPU Pytorch sur le système CentOS nécessite l'installation de versions CUDA, CUDNN et GPU de Pytorch. Les étapes suivantes vous guideront tout au long du processus: CUDA et CUDNN Installation détermineront la compatibilité de la version CUDA: utilisez la commande NVIDIA-SMI pour afficher la version CUDA prise en charge par votre carte graphique NVIDIA. Par exemple, votre carte graphique MX450 peut prendre en charge CUDA11.1 ou plus. Téléchargez et installez Cudatoolkit: visitez le site officiel de Nvidiacudatoolkit et téléchargez et installez la version correspondante selon la version CUDA la plus élevée prise en charge par votre carte graphique. Installez la bibliothèque CUDNN:

Docker utilise les fonctionnalités du noyau Linux pour fournir un environnement de fonctionnement d'application efficace et isolé. Son principe de travail est le suivant: 1. Le miroir est utilisé comme modèle en lecture seule, qui contient tout ce dont vous avez besoin pour exécuter l'application; 2. Le Système de fichiers Union (UnionFS) empile plusieurs systèmes de fichiers, ne stockant que les différences, l'économie d'espace et l'accélération; 3. Le démon gère les miroirs et les conteneurs, et le client les utilise pour l'interaction; 4. Les espaces de noms et les CGROUP implémentent l'isolement des conteneurs et les limitations de ressources; 5. Modes de réseau multiples prennent en charge l'interconnexion du conteneur. Ce n'est qu'en comprenant ces concepts principaux que vous pouvez mieux utiliser Docker.

Lors de la sélection d'une version Pytorch sous CentOS, les facteurs clés suivants doivent être pris en compte: 1. CUDA Version Compatibilité GPU Prise en charge: si vous avez NVIDIA GPU et que vous souhaitez utiliser l'accélération GPU, vous devez choisir Pytorch qui prend en charge la version CUDA correspondante. Vous pouvez afficher la version CUDA prise en charge en exécutant la commande nvidia-SMI. Version CPU: Si vous n'avez pas de GPU ou que vous ne souhaitez pas utiliser de GPU, vous pouvez choisir une version CPU de Pytorch. 2. Version Python Pytorch

Minio Object Storage: Déploiement haute performance dans le système Centos System Minio est un système de stockage d'objets distribué haute performance développé sur la base du langage Go, compatible avec Amazons3. Il prend en charge une variété de langages clients, notamment Java, Python, JavaScript et GO. Cet article introduira brièvement l'installation et la compatibilité de Minio sur les systèmes CentOS. Compatibilité de la version CentOS Minio a été vérifiée sur plusieurs versions CentOS, y compris, mais sans s'y limiter: CentOS7.9: fournit un guide d'installation complet couvrant la configuration du cluster, la préparation de l'environnement, les paramètres de fichiers de configuration, le partitionnement du disque et la mini

La formation distribuée par Pytorch sur le système CentOS nécessite les étapes suivantes: Installation de Pytorch: La prémisse est que Python et PIP sont installés dans le système CentOS. Selon votre version CUDA, obtenez la commande d'installation appropriée sur le site officiel de Pytorch. Pour la formation du processeur uniquement, vous pouvez utiliser la commande suivante: pipinstalltorchtorchVisionTorChaudio Si vous avez besoin d'une prise en charge du GPU, assurez-vous que la version correspondante de CUDA et CUDNN est installée et utilise la version Pytorch correspondante pour l'installation. Configuration de l'environnement distribué: la formation distribuée nécessite généralement plusieurs machines ou des GPU multiples uniques. Lieu
