


Comment utiliser C++ pour une compression et un stockage de données efficaces ?
Comment utiliser le C++ pour une compression et un stockage de données efficaces ?
Introduction :
À mesure que la quantité de données augmente, la compression et le stockage des données deviennent de plus en plus importants. Il existe de nombreuses façons d’obtenir une compression et un stockage efficaces des données en C++. Cet article présentera certains algorithmes de compression de données et technologies de stockage de données courants en C++, et fournira des exemples de code correspondants.
1. Algorithme de compression de données
1.1 Algorithme de compression basé sur le codage de Huffman
Le codage de Huffman est un algorithme de compression de données basé sur un codage de longueur variable. Il compresse les données en attribuant des codes plus courts aux caractères (ou blocs de données) avec une fréquence plus élevée et des codes plus longs aux caractères (ou blocs de données) avec une fréquence plus faible. Voici un exemple de code pour implémenter le codage Huffman en utilisant C++ :
#include <iostream> #include <unordered_map> #include <queue> #include <string> struct TreeNode { char data; int freq; TreeNode* left; TreeNode* right; TreeNode(char data, int freq) : data(data), freq(freq), left(nullptr), right(nullptr) {} }; struct compare { bool operator()(TreeNode* a, TreeNode* b) { return a->freq > b->freq; } }; void generateCodes(TreeNode* root, std::string code, std::unordered_map<char, std::string>& codes) { if (root->left == nullptr && root->right == nullptr) { codes[root->data] = code; return; } generateCodes(root->left, code + "0", codes); generateCodes(root->right, code + "1", codes); } void huffmanCompression(std::string input) { std::unordered_map<char, int> freqMap; for (char c : input) { freqMap[c]++; } std::priority_queue<TreeNode*, std::vector<TreeNode*>, compare> minHeap; for (auto& entry : freqMap) { minHeap.push(new TreeNode(entry.first, entry.second)); } while (minHeap.size() > 1) { TreeNode* left = minHeap.top(); minHeap.pop(); TreeNode* right = minHeap.top(); minHeap.pop(); TreeNode* parent = new TreeNode('', left->freq + right->freq); parent->left = left; parent->right = right; minHeap.push(parent); } TreeNode* root = minHeap.top(); std::unordered_map<char, std::string> codes; generateCodes(root, "", codes); std::string compressed; for (char c : input) { compressed += codes[c]; } std::cout << "Compressed: " << compressed << std::endl; std::cout << "Uncompressed: " << input << std::endl; std::cout << "Compression ratio: " << (double)compressed.size() / input.size() << std::endl; // 清理内存 delete root; } int main() { std::string input = "abracadabra"; huffmanCompression(input); return 0; }
1.2 Algorithme de Lempel-Ziv-Welch (LZW)
L'algorithme LZW est un algorithme de compression de données sans perte couramment utilisé dans le format d'image GIF. Il utilise un dictionnaire pour stocker les chaînes existantes et réduit la longueur de la chaîne compressée en développant continuellement le dictionnaire. Voici un exemple de code pour implémenter l'algorithme LZW en utilisant C++ :
#include <iostream> #include <unordered_map> #include <string> void lzwCompression(std::string input) { std::unordered_map<std::string, int> dictionary; for (int i = 0; i < 256; i++) { dictionary[std::string(1, i)] = i; } std::string output; std::string current; for (char c : input) { std::string temp = current + c; if (dictionary.find(temp) != dictionary.end()) { current = temp; } else { output += std::to_string(dictionary[current]) + " "; dictionary[temp] = dictionary.size(); current = std::string(1, c); } } if (!current.empty()) { output += std::to_string(dictionary[current]) + " "; } std::cout << "Compressed: " << output << std::endl; std::cout << "Uncompressed: " << input << std::endl; std::cout << "Compression ratio: " << (double)output.size() / input.size() << std::endl; } int main() { std::string input = "abracadabra"; lzwCompression(input); return 0; }
2. Technologie de stockage de données
2.1 Stockage de fichiers binaires
Le stockage de fichiers binaires est une méthode d'écriture de données dans un fichier sous forme binaire. Par rapport au stockage de fichiers texte, le stockage de fichiers binaires peut économiser de l'espace de stockage et lire et écrire plus rapidement. Voici un exemple de code pour le stockage de fichiers binaires en utilisant C++ :
#include <iostream> #include <fstream> struct Data { int i; double d; char c; }; void binaryFileStorage(Data data) { std::ofstream outfile("data.bin", std::ios::binary); outfile.write(reinterpret_cast<char*>(&data), sizeof(data)); outfile.close(); std::ifstream infile("data.bin", std::ios::binary); Data readData; infile.read(reinterpret_cast<char*>(&readData), sizeof(readData)); infile.close(); std::cout << "Original: " << data.i << ", " << data.d << ", " << data.c << std::endl; std::cout << "Read from file: " << readData.i << ", " << readData.d << ", " << readData.c << std::endl; } int main() { Data data {42, 3.14, 'A'}; binaryFileStorage(data); return 0; }
2.2 Stockage de fichiers compressés
Le stockage de fichiers compressés est une méthode d'écriture de données dans un fichier dans un format compressé. Le stockage de fichiers compressés peut économiser de l'espace de stockage, mais la vitesse de lecture et d'écriture est plus lente. Voici un exemple de code pour le stockage de fichiers compressés à l'aide de C++ :
#include <iostream> #include <fstream> #include <sstream> #include <iomanip> #include <zlib.h> void compressFileStorage(std::string input) { std::ostringstream compressedStream; z_stream defStream; defStream.zalloc = Z_NULL; defStream.zfree = Z_NULL; defStream.opaque = Z_NULL; defStream.avail_in = input.size(); defStream.next_in = (Bytef*)input.c_str(); defStream.avail_out = input.size() + (input.size() / 100) + 12; defStream.next_out = (Bytef*)compressedStream.str().c_str(); deflateInit(&defStream, Z_DEFAULT_COMPRESSION); deflate(&defStream, Z_FINISH); deflateEnd(&defStream); std::string compressed = compressedStream.str(); std::ofstream outfile("compressed.txt", std::ios::binary); outfile.write(compressed.c_str(), compressed.size()); outfile.close(); std::ifstream infile("compressed.txt", std::ios::binary); std::ostringstream decompressedStream; z_stream infStream; infStream.zalloc = Z_NULL; infStream.zfree = Z_NULL; infStream.opaque = Z_NULL; infStream.avail_in = compressed.size(); infStream.next_in = (Bytef*)compressed.c_str(); infStream.avail_out = compressed.size() * 10; infStream.next_out = (Bytef*)decompressedStream.str().c_str(); inflateInit(&infStream); inflate(&infStream, Z_NO_FLUSH); inflateEnd(&infStream); std::string decompressed = decompressedStream.str(); std::cout << "Original: " << input << std::endl; std::cout << "Compressed: " << compressed << std::endl; std::cout << "Decompressed: " << decompressed << std::endl; } int main() { std::string input = "abracadabra"; compressFileStorage(input); return 0; }
Conclusion :
Cet article présente plusieurs algorithmes de compression de données et technologies de stockage de données courants en C++, et fournit des exemples de code correspondants. Une compression et un stockage efficaces des données peuvent être obtenus en sélectionnant des algorithmes de compression de données et des technologies de stockage appropriés. Dans les applications pratiques, la méthode la plus appropriée peut être sélectionnée en fonction des caractéristiques et des besoins des données.
Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Outils d'IA chauds

Undresser.AI Undress
Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover
Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool
Images de déshabillage gratuites

Clothoff.io
Dissolvant de vêtements AI

AI Hentai Generator
Générez AI Hentai gratuitement.

Article chaud

Outils chauds

Bloc-notes++7.3.1
Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise
Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1
Puissant environnement de développement intégré PHP

Dreamweaver CS6
Outils de développement Web visuel

SublimeText3 version Mac
Logiciel d'édition de code au niveau de Dieu (SublimeText3)

Les étapes pour implémenter le modèle de stratégie en C++ sont les suivantes : définir l'interface de stratégie et déclarer les méthodes qui doivent être exécutées. Créez des classes de stratégie spécifiques, implémentez l'interface respectivement et fournissez différents algorithmes. Utilisez une classe de contexte pour contenir une référence à une classe de stratégie concrète et effectuer des opérations via celle-ci.

La gestion des exceptions imbriquées est implémentée en C++ via des blocs try-catch imbriqués, permettant de déclencher de nouvelles exceptions dans le gestionnaire d'exceptions. Les étapes try-catch imbriquées sont les suivantes : 1. Le bloc try-catch externe gère toutes les exceptions, y compris celles levées par le gestionnaire d'exceptions interne. 2. Le bloc try-catch interne gère des types spécifiques d'exceptions, et si une exception hors de portée se produit, le contrôle est confié au gestionnaire d'exceptions externe.

L'héritage de modèle C++ permet aux classes dérivées d'un modèle de réutiliser le code et les fonctionnalités du modèle de classe de base, ce qui convient à la création de classes avec la même logique de base mais des comportements spécifiques différents. La syntaxe d'héritage du modèle est : templateclassDerived:publicBase{}. Exemple : templateclassBase{};templateclassDerived:publicBase{};. Cas pratique : création de la classe dérivée Derived, héritage de la fonction de comptage de la classe de base Base et ajout de la méthode printCount pour imprimer le décompte actuel.

En C, le type de char est utilisé dans les chaînes: 1. Stockez un seul caractère; 2. Utilisez un tableau pour représenter une chaîne et se terminer avec un terminateur nul; 3. Faire fonctionner via une fonction de fonctionnement de chaîne; 4. Lisez ou sortant une chaîne du clavier.

Causes et solutions pour les erreurs Lors de l'utilisation de PECL pour installer des extensions dans un environnement Docker Lorsque nous utilisons un environnement Docker, nous rencontrons souvent des maux de tête ...

En C++ multithread, la gestion des exceptions est implémentée via les mécanismes std::promise et std::future : utilisez l'objet promise pour enregistrer l'exception dans le thread qui lève l'exception. Utilisez un objet futur pour rechercher des exceptions dans le thread qui reçoit l'exception. Des cas pratiques montrent comment utiliser les promesses et les contrats à terme pour détecter et gérer les exceptions dans différents threads.

Le multithreading dans la langue peut considérablement améliorer l'efficacité du programme. Il existe quatre façons principales d'implémenter le multithreading dans le langage C: créer des processus indépendants: créer plusieurs processus en cours d'exécution indépendante, chaque processus a son propre espace mémoire. Pseudo-Multithreading: Créez plusieurs flux d'exécution dans un processus qui partagent le même espace mémoire et exécutent alternativement. Bibliothèque multi-thread: Utilisez des bibliothèques multi-threades telles que PTHEADS pour créer et gérer des threads, en fournissant des fonctions de fonctionnement de thread riches. Coroutine: une implémentation multi-thread légère qui divise les tâches en petites sous-tâches et les exécute tour à tour.

Le calcul de C35 est essentiellement des mathématiques combinatoires, représentant le nombre de combinaisons sélectionnées parmi 3 des 5 éléments. La formule de calcul est C53 = 5! / (3! * 2!), Qui peut être directement calculé par des boucles pour améliorer l'efficacité et éviter le débordement. De plus, la compréhension de la nature des combinaisons et la maîtrise des méthodes de calcul efficaces est cruciale pour résoudre de nombreux problèmes dans les domaines des statistiques de probabilité, de la cryptographie, de la conception d'algorithmes, etc.
