


Comment effectuer une transformation Hough sur des images à l'aide de Python
Comment utiliser Python pour effectuer une transformation de Hough sur des images
Résumé :
La transformation de Hough est une technique de traitement d'image couramment utilisée pour détecter des lignes droites ou certaines formes spécifiques dans les images. Cet article expliquera comment utiliser la bibliothèque OpenCV en Python pour implémenter la transformation de Hough et expliquera en détail son processus d'implémentation à travers des exemples de code.
Introduction :
La transformée de Hough est une technique de traitement d'image proposée par Hough en 1962 et était à l'origine utilisée pour détecter des lignes droites dans les images. Par la suite, la transformée de Hough a été largement utilisée et étendue pour détecter des cercles, des ellipses et d’autres formes. Dans le domaine de la vision par ordinateur et du traitement d’images, la transformée de Hough est un outil très important.
1. Principe de Hough Transform
Le principe de base de Hough Transform est de convertir chaque pixel de l'image en une courbe (ou un espace de paramètres) dans l'espace de coordonnées polaires (Hough Space). Pour une ligne droite, les deux paramètres représentent respectivement la distance et l’angle de la ligne droite. En sélectionnant des points dans l'espace des paramètres et en trouvant des intersections sur les courbes, toutes les lignes droites de l'image originale peuvent être obtenues.
2. Introduction à la bibliothèque OpenCV
OpenCV est une bibliothèque de logiciels open source de vision par ordinateur et d'apprentissage automatique qui fournit une richesse d'algorithmes de traitement d'images et de vision par ordinateur. Il s'agit de l'une des bibliothèques de traitement d'images les plus populaires en Python, avec de puissantes fonctions de traitement d'images et une interface facile à utiliser. Cet article utilisera la bibliothèque OpenCV pour implémenter la transformation de Hough.
3. Utilisez Python pour effectuer la transformation Hough
Ce qui suit utilise un exemple spécifique pour montrer comment utiliser Python pour effectuer la transformation Hough sur des images.
Tout d'abord, nous devons importer les bibliothèques requises :
import cv2 import numpy as np import matplotlib.pyplot as plt
Ensuite, lire et afficher l'image originale :
image = cv2.imread("image.jpg") plt.imshow(cv2.cvtColor(image, cv2.COLOR_BGR2RGB)) plt.axis('off') plt.show()
Ensuite, convertir l'image en niveaux de gris :
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
Ensuite, effectuez une détection des contours sur l'image :
edges = cv2.Canny(gray, 50, 150)
Ensuite, effectuez la transformation de Hough :
lines = cv2.HoughLines(edges, 1, np.pi/180, 200)
Parcourez et tracez les lignes droites détectées :
for line in lines: rho, theta = line[0] a = np.cos(theta) b = np.sin(theta) x0 = a*rho y0 = b*rho x1 = int(x0 + 1000*(-b)) y1 = int(y0 + 1000*(a)) x2 = int(x0 - 1000*(-b)) y2 = int(y0 - 1000*(a)) cv2.line(image, (x1, y1), (x2, y2), (0, 0, 255), 2)
Enfin, affichez l'image traitée :
plt.imshow(cv2.cvtColor(image, cv2.COLOR_BGR2RGB)) plt.axis('off') plt.show()
Conclusion :
Cet article détaille comment utiliser la bibliothèque OpenCV en Python pour transformer des images. transformer. Grâce à l'exemple de code, nous pouvons voir la puissante capacité de la transformation de Hough à détecter des lignes droites. En plus des lignes droites, OpenCV fournit également des implémentations de transformation de Hough d'autres formes, que les lecteurs peuvent apprendre et essayer davantage.
Référence :
- Hough, P. V. C. « Method and Means for Recognizing Complex Patterns », brevet américain 3 069 654, 18 décembre 1962.
- Bradski, G., Kaehler, A. « Learning OpenCV : Computer Vision with the Bibliothèque OpenCV." O'Reilly Media, Inc., 2008.
Annexe :
Voir le bloc de code ci-dessous pour le code complet :
import cv2 import numpy as np import matplotlib.pyplot as plt # 读取并显示原始图像 image = cv2.imread("image.jpg") plt.imshow(cv2.cvtColor(image, cv2.COLOR_BGR2RGB)) plt.axis('off') plt.show() # 将图像转换为灰度图像 gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) # 对图像进行边缘检测 edges = cv2.Canny(gray, 50, 150) # 进行霍夫变换 lines = cv2.HoughLines(edges, 1, np.pi/180, 200) # 遍历并绘制检测到的直线 for line in lines: rho, theta = line[0] a = np.cos(theta) b = np.sin(theta) x0 = a*rho y0 = b*rho x1 = int(x0 + 1000*(-b)) y1 = int(y0 + 1000*(a)) x2 = int(x0 - 1000*(-b)) y2 = int(y0 - 1000*(a)) cv2.line(image, (x1, y1), (x2, y2), (0, 0, 255), 2) # 显示处理后的图像 plt.imshow(cv2.cvtColor(image, cv2.COLOR_BGR2RGB)) plt.axis('off') plt.show()
Remarque : Veuillez remplacer le "image.jpg"
dans le code par votre propre chemin d'image.
Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Outils d'IA chauds

Undresser.AI Undress
Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover
Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool
Images de déshabillage gratuites

Clothoff.io
Dissolvant de vêtements AI

AI Hentai Generator
Générez AI Hentai gratuitement.

Article chaud

Outils chauds

Bloc-notes++7.3.1
Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise
Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1
Puissant environnement de développement intégré PHP

Dreamweaver CS6
Outils de développement Web visuel

SublimeText3 version Mac
Logiciel d'édition de code au niveau de Dieu (SublimeText3)

MySQL a une version communautaire gratuite et une version d'entreprise payante. La version communautaire peut être utilisée et modifiée gratuitement, mais le support est limité et convient aux applications avec des exigences de stabilité faibles et des capacités techniques solides. L'Enterprise Edition fournit une prise en charge commerciale complète pour les applications qui nécessitent une base de données stable, fiable et haute performance et disposées à payer pour le soutien. Les facteurs pris en compte lors du choix d'une version comprennent la criticité des applications, la budgétisation et les compétences techniques. Il n'y a pas d'option parfaite, seulement l'option la plus appropriée, et vous devez choisir soigneusement en fonction de la situation spécifique.

L'article présente le fonctionnement de la base de données MySQL. Tout d'abord, vous devez installer un client MySQL, tel que MySQLWorkBench ou le client de ligne de commande. 1. Utilisez la commande MySQL-UROot-P pour vous connecter au serveur et connecter avec le mot de passe du compte racine; 2. Utilisez Createdatabase pour créer une base de données et utilisez Sélectionner une base de données; 3. Utilisez CreateTable pour créer une table, définissez des champs et des types de données; 4. Utilisez InsertInto pour insérer des données, remettre en question les données, mettre à jour les données par mise à jour et supprimer les données par Supprimer. Ce n'est qu'en maîtrisant ces étapes, en apprenant à faire face à des problèmes courants et à l'optimisation des performances de la base de données que vous pouvez utiliser efficacement MySQL.

Les principales raisons de la défaillance de l'installation de MySQL sont les suivantes: 1. Problèmes d'autorisation, vous devez s'exécuter en tant qu'administrateur ou utiliser la commande sudo; 2. Des dépendances sont manquantes et vous devez installer des packages de développement pertinents; 3. Conflits du port, vous devez fermer le programme qui occupe le port 3306 ou modifier le fichier de configuration; 4. Le package d'installation est corrompu, vous devez télécharger et vérifier l'intégrité; 5. La variable d'environnement est mal configurée et les variables d'environnement doivent être correctement configurées en fonction du système d'exploitation. Résolvez ces problèmes et vérifiez soigneusement chaque étape pour installer avec succès MySQL.

Le fichier de téléchargement mysql est corrompu, que dois-je faire? Hélas, si vous téléchargez MySQL, vous pouvez rencontrer la corruption des fichiers. Ce n'est vraiment pas facile ces jours-ci! Cet article expliquera comment résoudre ce problème afin que tout le monde puisse éviter les détours. Après l'avoir lu, vous pouvez non seulement réparer le package d'installation MySQL endommagé, mais aussi avoir une compréhension plus approfondie du processus de téléchargement et d'installation pour éviter de rester coincé à l'avenir. Parlons d'abord de la raison pour laquelle le téléchargement des fichiers est endommagé. Il y a de nombreuses raisons à cela. Les problèmes de réseau sont le coupable. L'interruption du processus de téléchargement et l'instabilité du réseau peut conduire à la corruption des fichiers. Il y a aussi le problème avec la source de téléchargement elle-même. Le fichier serveur lui-même est cassé, et bien sûr, il est également cassé si vous le téléchargez. De plus, la numérisation excessive "passionnée" de certains logiciels antivirus peut également entraîner une corruption des fichiers. Problème de diagnostic: déterminer si le fichier est vraiment corrompu

Guide d'optimisation des performances de la base de données MySQL dans les applications à forte intensité de ressources, la base de données MySQL joue un rôle crucial et est responsable de la gestion des transactions massives. Cependant, à mesure que l'échelle de l'application se développe, les goulots d'étranglement des performances de la base de données deviennent souvent une contrainte. Cet article explorera une série de stratégies efficaces d'optimisation des performances MySQL pour garantir que votre application reste efficace et réactive dans des charges élevées. Nous combinerons des cas réels pour expliquer les technologies clés approfondies telles que l'indexation, l'optimisation des requêtes, la conception de la base de données et la mise en cache. 1. La conception de l'architecture de la base de données et l'architecture optimisée de la base de données sont la pierre angulaire de l'optimisation des performances MySQL. Voici quelques principes de base: sélectionner le bon type de données et sélectionner le plus petit type de données qui répond aux besoins peut non seulement économiser un espace de stockage, mais également améliorer la vitesse de traitement des données.

L'optimisation des performances MySQL doit commencer à partir de trois aspects: configuration d'installation, indexation et optimisation des requêtes, surveillance et réglage. 1. Après l'installation, vous devez ajuster le fichier my.cnf en fonction de la configuration du serveur, tel que le paramètre innodb_buffer_pool_size, et fermer query_cache_size; 2. Créez un index approprié pour éviter les index excessifs et optimiser les instructions de requête, telles que l'utilisation de la commande Explication pour analyser le plan d'exécution; 3. Utilisez le propre outil de surveillance de MySQL (ShowProcessList, Showstatus) pour surveiller la santé de la base de données, et sauvegarde régulièrement et organisez la base de données. Ce n'est qu'en optimisant en continu ces étapes que les performances de la base de données MySQL peuvent être améliorées.

MySQL peut s'exécuter sans connexions réseau pour le stockage et la gestion des données de base. Cependant, la connexion réseau est requise pour l'interaction avec d'autres systèmes, l'accès à distance ou l'utilisation de fonctionnalités avancées telles que la réplication et le clustering. De plus, les mesures de sécurité (telles que les pare-feu), l'optimisation des performances (choisissez la bonne connexion réseau) et la sauvegarde des données sont essentielles pour se connecter à Internet.

Il est impossible de visualiser le mot de passe MongoDB directement via NAVICAT car il est stocké sous forme de valeurs de hachage. Comment récupérer les mots de passe perdus: 1. Réinitialiser les mots de passe; 2. Vérifiez les fichiers de configuration (peut contenir des valeurs de hachage); 3. Vérifiez les codes (May Code Hardcode).
