Table des matières
Installez Yahoo Finance (yfinance)
Grammaire
Comment obtenir les données actuelles sur le cours des actions
Exemple
Sortie
Comment obtenir des données historiques sur les cours des actions
Convertir les données pour analyse
Stockez les données acquises dans un fichier CSV
Visualisez les données
Conclusion
Maison développement back-end Tutoriel Python Quelle est la meilleure façon d'obtenir des données boursières en utilisant Python ?

Quelle est la meilleure façon d'obtenir des données boursières en utilisant Python ?

Aug 26, 2023 pm 01:41 PM
python 股票 获取数据

Quelle est la meilleure façon dobtenir des données boursières en utilisant Python ?

Dans cet article, nous apprendrons la meilleure façon d'obtenir des données boursières à l'aide de Python.

La bibliothèque

yfinance Python sera utilisée pour récupérer les données actuelles et historiques sur les cours boursiers de Yahoo Finance.

Installez Yahoo Finance (yfinance)

L'une des meilleures plateformes de données boursières est Yahoo Finance. Téléchargez simplement l'ensemble de données depuis le site Web Yahoo Finance et utilisez la bibliothèque yfinance et la programmation Python pour y accéder.

Vous pouvez installer yfinance à l'aide de pip, tout ce que vous avez à faire est d'ouvrir l'invite de commande et de taper la commande suivante pour afficher la syntaxe :

Grammaire

pip install yfinance
Copier après la connexion

La meilleure partie de la bibliothèque yfinance est qu'elle est gratuite et ne nécessite pas de clé API

Comment obtenir les données actuelles sur le cours des actions

Nous devons trouver les symboles boursiers qui peuvent être utilisés pour l’extraction de données. nous montrerons Le prix actuel du marché et le cours de clôture précédent de GOOGL dans l'exemple ci-dessous.

Exemple

Le programme suivant renvoie la valeur du prix du marché, la valeur de clôture précédente et le code boursier Utiliser les valeurs du module yfinance -

import yfinance as yf
ticker = yf.Ticker('GOOGL').info
marketPrice = ticker['regularMarketPrice']
previousClosePrice = ticker['regularMarketPreviousClose']
print('Ticker Value: GOOGL')
print('Market Price Value:', marketPrice)
print('Previous Close Price Value:', previousClosePrice)
Copier après la connexion

Sortie

Une fois exécuté, le programme ci-dessus générera le résultat suivant -

Ticker Value: GOOGL
Market Price Value: 92.83
Previous Close Price Value: 93.71
Copier après la connexion

Comment obtenir des données historiques sur les cours des actions

En indiquant la date de début, la date de fin et le ticker, nous pouvons obtenir des données historiques complètes sur les prix.

Exemple

Le programme suivant renvoie les données boursières entre la date de début et la date de fin -

# importing the yfinance package
import yfinance as yf

# giving the start and end dates
startDate = '2015-03-01'
endDate = '2017-03-01'

# setting the ticker value
ticker = 'GOOGL'

# downloading the data of the ticker value between
# the start and end dates
resultData = yf.download(ticker, startDate, endDate)

# printing the last 5 rows of the data
print(resultData.tail())
Copier après la connexion

Sortie

Une fois exécuté, le programme ci-dessus générera le résultat suivant -

[*********************100%***********************] 1 of 1 completed
            Open      High     Low       Close     Adj Close Volume
Date
2017-02-22 42.400002 42.689499 42.335499 42.568001 42.568001 24488000
2017-02-23 42.554001 42.631001 42.125000 42.549999 42.549999 27734000
2017-02-24 42.382500 42.417999 42.147999 42.390499 42.390499 26924000
2017-02-27 42.247501 42.533501 42.150501 42.483501 42.483501 20206000
2017-02-28 42.367500 42.441502 42.071999 42.246498 42.246498 27662000
Copier après la connexion

L'exemple ci-dessus récupérera les données boursières du 2015-03-01 au 2017-03-01.

Si vous souhaitez extraire les données de plusieurs codes en même temps, veuillez fournir les codes sous forme de chaînes séparées par des espaces.

Convertir les données pour analyse

Date est l'index de l'ensemble de données, pas la colonne de l'ensemble de données dans l'exemple ci-dessus. Cet index doit être converti en colonnes avant qu'une analyse de données puisse y être effectuée. Voici comment procéder -

Exemple

Le programme suivant ajoute des noms de colonnes aux données boursières entre les dates de début et de fin -

import yfinance as yf

# giving the start and end dates
startDate = '2015-03-01'
endDate = '2017-03-01'

# setting the ticker value
ticker = 'GOOGL'

# downloading the data of the ticker value between
# the start and end dates
resultData = yf.download(ticker, startDate, endDate)

# Setting date as index
resultData["Date"] = resultData.index

# Giving column names
resultData = resultData[["Date", "Open", "High","Low", "Close", "Adj Close", "Volume"]]

# Resetting the index values
resultData.reset_index(drop=True, inplace=True)

# getting the first 5 rows of the data
print(resultData.head())
Copier après la connexion

Sortie

Une fois exécuté, le programme ci-dessus générera le résultat suivant -

[*********************100%***********************] 1 of 1 completed
   Date      Open       High     Low       Close     Adj Close  Volume

0 2015-03-02 28.350000 28.799500 28.157499 28.750999 28.750999 50406000
1 2015-03-03 28.817499 29.042500 28.525000 28.939501 28.939501 50526000
2 2015-03-04 28.848499 29.081499 28.625999 28.916500 28.916500 37964000
3 2015-03-05 28.981001 29.160000 28.911501 29.071501 29.071501 35918000
4 2015-03-06 29.100000 29.139000 28.603001 28.645000 28.645000 37592000
Copier après la connexion

Les données converties ci-dessus sont les mêmes que les données que nous avons obtenues de Yahoo Finance

Stockez les données acquises dans un fichier CSV

La méthode

to_csv() peut être utilisée pour exporter un objet DataFrame vers un fichier CSV. Le code suivant vous aidera à exporter les données dans un fichier CSV car les données converties ci-dessus sont déjà dans le dataframe pandas.

# importing yfinance module with an alias name
import yfinance as yf

# giving the start and end dates
startDate = '2015-03-01'
endDate = '2017-03-01'

# setting the ticker value
ticker = 'GOOGL'

# downloading the data of the ticker value between
# the start and end dates
resultData = yf.download(ticker, startDate, endDate)

# printing the last 5 rows of the data
print(resultData.tail())

# exporting/converting the above data to a CSV file
resultData.to_csv("outputGOOGL.csv")
Copier après la connexion

Sortie

Une fois exécuté, le programme ci-dessus générera le résultat suivant -

[*********************100%***********************] 1 of 1 completed
            Open      High     Low       Close     Adj Close  Volume

Date
2017-02-22 42.400002 42.689499 42.335499 42.568001 42.568001 24488000
2017-02-23 42.554001 42.631001 42.125000 42.549999 42.549999 27734000
2017-02-24 42.382500 42.417999 42.147999 42.390499 42.390499 26924000
2017-02-27 42.247501 42.533501 42.150501 42.483501 42.483501 20206000
2017-02-28 42.367500 42.441502 42.071999 42.246498 42.246498 27662000
Copier après la connexion

Visualisez les données

Le module Python

yfinance est l'un des plus simples à configurer, à collecter des données et à effectuer des activités d'analyse de données. À l'aide de packages tels que Matplotlib, Seaborn ou Bokeh, vous pouvez visualiser les résultats et capturer des informations.

Vous pouvez même afficher ces visualisations directement sur une page Web en utilisant PyScript.

Conclusion

Dans cet article, nous avons appris à utiliser le module Python yfinance pour obtenir les meilleures données boursières. De plus, nous avons appris comment obtenir toutes les données boursières pour une période de temps spécifiée, comment effectuer une analyse des données en ajoutant des index et des colonnes personnalisés, et comment convertir ces données en fichier CSV.

Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Déclaration de ce site Web
Le contenu de cet article est volontairement contribué par les internautes et les droits d'auteur appartiennent à l'auteur original. Ce site n'assume aucune responsabilité légale correspondante. Si vous trouvez un contenu suspecté de plagiat ou de contrefaçon, veuillez contacter admin@php.cn

Outils d'IA chauds

Undresser.AI Undress

Undresser.AI Undress

Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover

AI Clothes Remover

Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool

Undress AI Tool

Images de déshabillage gratuites

Clothoff.io

Clothoff.io

Dissolvant de vêtements AI

AI Hentai Generator

AI Hentai Generator

Générez AI Hentai gratuitement.

Article chaud

R.E.P.O. Crystals d'énergie expliqués et ce qu'ils font (cristal jaune)
1 Il y a quelques mois By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Meilleurs paramètres graphiques
1 Il y a quelques mois By 尊渡假赌尊渡假赌尊渡假赌
Will R.E.P.O. Vous avez un jeu croisé?
1 Il y a quelques mois By 尊渡假赌尊渡假赌尊渡假赌

Outils chauds

Bloc-notes++7.3.1

Bloc-notes++7.3.1

Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise

SublimeText3 version chinoise

Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1

Envoyer Studio 13.0.1

Puissant environnement de développement intégré PHP

Dreamweaver CS6

Dreamweaver CS6

Outils de développement Web visuel

SublimeText3 version Mac

SublimeText3 version Mac

Logiciel d'édition de code au niveau de Dieu (SublimeText3)

PHP et Python: exemples de code et comparaison PHP et Python: exemples de code et comparaison Apr 15, 2025 am 12:07 AM

PHP et Python ont leurs propres avantages et inconvénients, et le choix dépend des besoins du projet et des préférences personnelles. 1.Php convient au développement rapide et à la maintenance des applications Web à grande échelle. 2. Python domine le domaine de la science des données et de l'apprentissage automatique.

Comment est la prise en charge du GPU pour Pytorch sur Centos Comment est la prise en charge du GPU pour Pytorch sur Centos Apr 14, 2025 pm 06:48 PM

Activer l'accélération du GPU Pytorch sur le système CentOS nécessite l'installation de versions CUDA, CUDNN et GPU de Pytorch. Les étapes suivantes vous guideront tout au long du processus: CUDA et CUDNN Installation détermineront la compatibilité de la version CUDA: utilisez la commande NVIDIA-SMI pour afficher la version CUDA prise en charge par votre carte graphique NVIDIA. Par exemple, votre carte graphique MX450 peut prendre en charge CUDA11.1 ou plus. Téléchargez et installez Cudatoolkit: visitez le site officiel de Nvidiacudatoolkit et téléchargez et installez la version correspondante selon la version CUDA la plus élevée prise en charge par votre carte graphique. Installez la bibliothèque CUDNN:

Python vs JavaScript: communauté, bibliothèques et ressources Python vs JavaScript: communauté, bibliothèques et ressources Apr 15, 2025 am 12:16 AM

Python et JavaScript ont leurs propres avantages et inconvénients en termes de communauté, de bibliothèques et de ressources. 1) La communauté Python est amicale et adaptée aux débutants, mais les ressources de développement frontal ne sont pas aussi riches que JavaScript. 2) Python est puissant dans les bibliothèques de science des données et d'apprentissage automatique, tandis que JavaScript est meilleur dans les bibliothèques et les cadres de développement frontaux. 3) Les deux ont des ressources d'apprentissage riches, mais Python convient pour commencer par des documents officiels, tandis que JavaScript est meilleur avec MDNWEBDOCS. Le choix doit être basé sur les besoins du projet et les intérêts personnels.

Explication détaillée du principe docker Explication détaillée du principe docker Apr 14, 2025 pm 11:57 PM

Docker utilise les fonctionnalités du noyau Linux pour fournir un environnement de fonctionnement d'application efficace et isolé. Son principe de travail est le suivant: 1. Le miroir est utilisé comme modèle en lecture seule, qui contient tout ce dont vous avez besoin pour exécuter l'application; 2. Le Système de fichiers Union (UnionFS) empile plusieurs systèmes de fichiers, ne stockant que les différences, l'économie d'espace et l'accélération; 3. Le démon gère les miroirs et les conteneurs, et le client les utilise pour l'interaction; 4. Les espaces de noms et les CGROUP implémentent l'isolement des conteneurs et les limitations de ressources; 5. Modes de réseau multiples prennent en charge l'interconnexion du conteneur. Ce n'est qu'en comprenant ces concepts principaux que vous pouvez mieux utiliser Docker.

Miniopen Centos Compatibilité Miniopen Centos Compatibilité Apr 14, 2025 pm 05:45 PM

Minio Object Storage: Déploiement haute performance dans le système Centos System Minio est un système de stockage d'objets distribué haute performance développé sur la base du langage Go, compatible avec Amazons3. Il prend en charge une variété de langages clients, notamment Java, Python, JavaScript et GO. Cet article introduira brièvement l'installation et la compatibilité de Minio sur les systèmes CentOS. Compatibilité de la version CentOS Minio a été vérifiée sur plusieurs versions CentOS, y compris, mais sans s'y limiter: CentOS7.9: fournit un guide d'installation complet couvrant la configuration du cluster, la préparation de l'environnement, les paramètres de fichiers de configuration, le partitionnement du disque et la mini

Comment faire fonctionner la formation distribuée de Pytorch sur CentOS Comment faire fonctionner la formation distribuée de Pytorch sur CentOS Apr 14, 2025 pm 06:36 PM

La formation distribuée par Pytorch sur le système CentOS nécessite les étapes suivantes: Installation de Pytorch: La prémisse est que Python et PIP sont installés dans le système CentOS. Selon votre version CUDA, obtenez la commande d'installation appropriée sur le site officiel de Pytorch. Pour la formation du processeur uniquement, vous pouvez utiliser la commande suivante: pipinstalltorchtorchVisionTorChaudio Si vous avez besoin d'une prise en charge du GPU, assurez-vous que la version correspondante de CUDA et CUDNN est installée et utilise la version Pytorch correspondante pour l'installation. Configuration de l'environnement distribué: la formation distribuée nécessite généralement plusieurs machines ou des GPU multiples uniques. Lieu

Comment choisir la version Pytorch sur Centos Comment choisir la version Pytorch sur Centos Apr 14, 2025 pm 06:51 PM

Lors de l'installation de Pytorch sur le système CentOS, vous devez sélectionner soigneusement la version appropriée et considérer les facteurs clés suivants: 1. Compatibilité de l'environnement du système: Système d'exploitation: Il est recommandé d'utiliser CentOS7 ou plus. CUDA et CUDNN: La version Pytorch et la version CUDA sont étroitement liées. Par exemple, Pytorch1.9.0 nécessite CUDA11.1, tandis que Pytorch2.0.1 nécessite CUDA11.3. La version CUDNN doit également correspondre à la version CUDA. Avant de sélectionner la version Pytorch, assurez-vous de confirmer que des versions compatibles CUDA et CUDNN ont été installées. Version Python: branche officielle de Pytorch

Comment mettre à jour Pytorch vers la dernière version sur Centos Comment mettre à jour Pytorch vers la dernière version sur Centos Apr 14, 2025 pm 06:15 PM

La mise à jour de Pytorch vers la dernière version sur CentOS peut suivre les étapes suivantes: Méthode 1: Mise à jour de PIP avec PIP: Assurez-vous d'abord que votre PIP est la dernière version, car les anciennes versions de PIP peuvent ne pas être en mesure d'installer correctement la dernière version de Pytorch. pipinstall-upradepip désinstalle ancienne version de Pytorch (si installé): PipuninstallTorchtorchVisiontorchaudio installation dernier

See all articles