


Comment distribuer le travail sur un ensemble de threads de travail en Python ?
Pour répartir le travail entre un groupe de threads de travail, utilisez le module concurrent .futures, en particulier Classe ThreadPoolExecutor.
Avec cette alternative, vous pouvez coder manuellement votre propre logique si vous souhaitez un contrôle précis sur l'algorithme de planification. Utilisez le module de file d'attente pour créer une file d'attente contenant une liste de tâches. La classe Queue gère une liste d'objets et possède une méthode .put(obj) qui ajoute des éléments à la file d'attente et une méthode .get() qui renvoie un élément. Cette classe se chargera du verrouillage nécessaire pour garantir que chaque tâche n'est distribuée qu'une seule fois.
Exemple
Voici un exemple -
import threading, queue, time # The worker thread gets jobs off the queue. When the queue is empty, it # assumes there will be no more work and exits. def worker(): print('Running worker') time.sleep(0.1) while True: try: arg = q.get(block=False) except queue.Empty: print('Worker', threading.current_thread(), end=' ') print('queue empty') break else: print('Worker', threading.current_thread(), end=' ') print('running with argument', arg) time.sleep(0.5) # Create a queue q = queue.Queue() # Start a pool of 5 workers for i in range(5): t = threading.Thread(target=worker, name='worker %i' % (i+1)) t.start() # Begin adding work to the queue for i in range(50): q.put(i) # Give threads time to run print('Main thread sleeping') time.sleep(5)
Sortie
Running worker Running worker Running worker Running worker Running worker Main thread sleeping Worker running with argument 0 Worker running with argument 1 Worker running with argument 2 Worker running with argument 3 Worker running with argument 4 Worker running with argument 5 Worker running with argument 6 Worker running with argument 7 Worker running with argument 8 Worker running with argument 9 Worker running with argument 10 Worker running with argument 11 Worker running with argument 12 Worker running with argument 13 Worker running with argument 14 Worker running with argument 15 Worker running with argument 16 Worker running with argument 17 Worker running with argument 18 Worker running with argument 19 Worker running with argument 20 Worker running with argument 21 Worker running with argument 22 Worker running with argument 23 Worker running with argument 24 Worker running with argument 25 Worker running with argument 26 Worker running with argument 28 Worker running with argument 29 Worker running with argument 27 Worker running with argument 30 Worker running with argument 31 Worker running with argument 32 Worker running with argument 33 Worker running with argument 34 Worker running with argument 35 Worker running with argument 36 Worker running with argument 37 Worker running with argument 38 Worker running with argument 39 Worker running with argument 40 Worker running with argument 41 Worker running with argument 42 Worker running with argument 43 Worker running with argument 44 Worker running with argument 45 Worker running with argument 46 Worker running with argument 47 Worker running with argument 48 Worker running with argument 49 Worker queue empty Worker queue empty Worker queue empty Worker queue empty Worker queue empty
Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Outils d'IA chauds

Undresser.AI Undress
Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover
Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool
Images de déshabillage gratuites

Clothoff.io
Dissolvant de vêtements AI

AI Hentai Generator
Générez AI Hentai gratuitement.

Article chaud

Outils chauds

Bloc-notes++7.3.1
Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise
Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1
Puissant environnement de développement intégré PHP

Dreamweaver CS6
Outils de développement Web visuel

SublimeText3 version Mac
Logiciel d'édition de code au niveau de Dieu (SublimeText3)

Sujets chauds



Solution aux problèmes d'autorisation Lors de la visualisation de la version Python dans Linux Terminal Lorsque vous essayez d'afficher la version Python dans Linux Terminal, entrez Python ...

Cet article explique comment utiliser la belle soupe, une bibliothèque Python, pour analyser HTML. Il détaille des méthodes courantes comme find (), find_all (), select () et get_text () pour l'extraction des données, la gestion de diverses structures et erreurs HTML et alternatives (Sel

La sérialisation et la désérialisation des objets Python sont des aspects clés de tout programme non trivial. Si vous enregistrez quelque chose dans un fichier Python, vous effectuez une sérialisation d'objets et une désérialisation si vous lisez le fichier de configuration, ou si vous répondez à une demande HTTP. Dans un sens, la sérialisation et la désérialisation sont les choses les plus ennuyeuses du monde. Qui se soucie de tous ces formats et protocoles? Vous voulez persister ou diffuser des objets Python et les récupérer dans son intégralité plus tard. C'est un excellent moyen de voir le monde à un niveau conceptuel. Cependant, à un niveau pratique, le schéma de sérialisation, le format ou le protocole que vous choisissez peut déterminer la vitesse, la sécurité, le statut de liberté de maintenance et d'autres aspects du programme

Cet article compare TensorFlow et Pytorch pour l'apprentissage en profondeur. Il détaille les étapes impliquées: préparation des données, construction de modèles, formation, évaluation et déploiement. Différences clés entre les cadres, en particulier en ce qui concerne le raisin informatique

Le module statistique de Python fournit de puissantes capacités d'analyse statistique de données pour nous aider à comprendre rapidement les caractéristiques globales des données, telles que la biostatistique et l'analyse commerciale. Au lieu de regarder les points de données un par un, regardez simplement des statistiques telles que la moyenne ou la variance pour découvrir les tendances et les fonctionnalités des données d'origine qui peuvent être ignorées et comparer les grands ensembles de données plus facilement et efficacement. Ce tutoriel expliquera comment calculer la moyenne et mesurer le degré de dispersion de l'ensemble de données. Sauf indication contraire, toutes les fonctions de ce module prennent en charge le calcul de la fonction moyenne () au lieu de simplement additionner la moyenne. Les nombres de points flottants peuvent également être utilisés. Importer au hasard Statistiques d'importation de fracTI

Ce tutoriel s'appuie sur l'introduction précédente à la belle soupe, en se concentrant sur la manipulation de Dom au-delà de la simple navigation sur les arbres. Nous explorerons des méthodes et techniques de recherche efficaces pour modifier la structure HTML. Une méthode de recherche DOM commune est ex

Cet article guide les développeurs Python sur la construction d'interfaces de ligne de commande (CLI). Il détaille à l'aide de bibliothèques comme Typer, Click et Argparse, mettant l'accent sur la gestion des entrées / sorties et promouvant des modèles de conception conviviaux pour une meilleure convivialité par la CLI.

L'article traite des bibliothèques Python populaires comme Numpy, Pandas, Matplotlib, Scikit-Learn, Tensorflow, Django, Flask et Demandes, détaillant leurs utilisations dans le calcul scientifique, l'analyse des données, la visualisation, l'apprentissage automatique, le développement Web et H et H
