Maison développement back-end C++ Comment implémenter des structures de données et des algorithmes simultanés en C++ ?

Comment implémenter des structures de données et des algorithmes simultanés en C++ ?

Aug 27, 2023 am 08:13 AM
数据结构 算法 concurrence C++

Comment implémenter des structures de données et des algorithmes simultanés en C++ ?

Comment implémenter des structures de données et des algorithmes simultanés en C++ ?

En programmation concurrente, l'utilisation correcte des structures de données et des algorithmes est très importante. En C++, nous pouvons utiliser diverses méthodes pour implémenter des structures de données et des algorithmes simultanés, notamment l'utilisation de verrous mutex, de variables de condition, d'opérations atomiques, etc.

1. Utiliser des verrous mutex
Les verrous mutex sont le mécanisme de contrôle de concurrence le plus élémentaire. La protection contre les opérations simultanées est obtenue en verrouillant les ressources partagées, puis en contrôlant l'accès. En C++, nous pouvons utiliser std::mutex pour implémenter les verrous mutex.

Par exemple, nous pouvons utiliser un verrou mutex pour implémenter une simple file d'attente thread-safe :

#include <mutex>
#include <queue>

template<typename T>
class ConcurrentQueue {
private:
    std::queue<T> q;
    std::mutex mtx;

public:
    void push(const T& value) {
        std::lock_guard<std::mutex> lock(mtx);
        q.push(value);
    }

    T pop() {
        std::lock_guard<std::mutex> lock(mtx);
        if (q.empty())
            throw std::runtime_error("Queue is empty");
        T value = q.front();
        q.pop();
        return value;
    }

    bool empty() {
        std::lock_guard<std::mutex> lock(mtx);
        return q.empty();
    }
};
Copier après la connexion

Dans le code ci-dessus, nous utilisons std::mutex pour protéger le fonctionnement de la file d'attente et gérer automatiquement le mutex via std::lock_guard Locking et le déverrouillage des serrures. Cela garantit que lorsque plusieurs threads accèdent à la file d'attente en même temps, un seul thread gère la file d'attente.

2. Utiliser des variables de condition
Les variables de condition sont un autre moyen d'implémenter des structures de données et des algorithmes simultanés en C++. Les variables de condition peuvent être utilisées pour la synchronisation et la communication entre les threads.

Par exemple, nous pouvons utiliser des variables de condition pour implémenter une simple file d'attente thread-safe Lorsque la file d'attente est vide, le thread consommateur attendra et se bloquera jusqu'à ce que de nouvelles données soient mises dans la file d'attente par le thread producteur.

#include <mutex>
#include <queue>
#include <condition_variable>

template<typename T>
class ConcurrentQueue {
private:
    std::queue<T> q;
    std::mutex mtx;
    std::condition_variable cv;

public:
    void push(const T& value) {
        std::lock_guard<std::mutex> lock(mtx);
        q.push(value);
        cv.notify_one();
    }

    T pop() {
        std::unique_lock<std::mutex> lock(mtx);
        cv.wait(lock, [this] { return !q.empty(); });
        T value = q.front();
        q.pop();
        return value;
    }

    bool empty() {
        std::lock_guard<std::mutex> lock(mtx);
        return q.empty();
    }
};
Copier après la connexion

Dans le code ci-dessus, nous utilisons std::condition_variable pour implémenter les opérations d'attente et de notification. Lorsque la file d'attente est vide, le thread consommateur appelle la fonction cv.wait() pour attendre que de nouvelles données soient mises dans la file d'attente par le thread producteur, puis la fonction cv.notify_one() informe le thread consommateur de poursuivre l'exécution.

3. Utiliser des opérations atomiques
Les opérations atomiques sont une méthode d'opération spéciale qui garantit que les opérations sur les ressources partagées sont ininterrompues. C++11 introduit une série d'interfaces d'opérations atomiques qui peuvent être utilisées pour implémenter des structures de données et des algorithmes simultanés efficaces.

Par exemple, nous pouvons utiliser des opérations atomiques pour implémenter un simple compteur thread-safe :

#include <atomic>

class ConcurrentCounter {
private:
    std::atomic<int> count;

public:
    ConcurrentCounter() : count(0) {}

    int increment() {
        return count.fetch_add(1) + 1;
    }

    int decrement() {
        return count.fetch_sub(1) - 1;
    }

    int get() {
        return count.load();
    }
};
Copier après la connexion

Dans le code ci-dessus, nous utilisons std::atomic pour déclarer une variable atomique via std::atomic::fetch_add() et std La fonction ::atomic::fetch_sub() effectue des opérations atomiques sur le compteur pour garantir la sécurité des threads.

Résumé :
La mise en œuvre de structures de données et d'algorithmes simultanés en C++ est une tâche complexe et importante. Nous pouvons utiliser des verrous mutex, des variables de condition, des opérations atomiques et de nombreuses autres méthodes pour garantir la sécurité des threads. Lors de la conception de structures de données et d'algorithmes simultanés, nous devons pleinement prendre en compte l'équilibre entre la cohérence des données et la concurrence, ainsi qu'éviter les problèmes courants dans la programmation simultanée tels que les blocages et les conditions de concurrence.

Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Déclaration de ce site Web
Le contenu de cet article est volontairement contribué par les internautes et les droits d'auteur appartiennent à l'auteur original. Ce site n'assume aucune responsabilité légale correspondante. Si vous trouvez un contenu suspecté de plagiat ou de contrefaçon, veuillez contacter admin@php.cn

Outils d'IA chauds

Undresser.AI Undress

Undresser.AI Undress

Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover

AI Clothes Remover

Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool

Undress AI Tool

Images de déshabillage gratuites

Clothoff.io

Clothoff.io

Dissolvant de vêtements AI

AI Hentai Generator

AI Hentai Generator

Générez AI Hentai gratuitement.

Article chaud

R.E.P.O. Crystals d'énergie expliqués et ce qu'ils font (cristal jaune)
3 Il y a quelques semaines By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Meilleurs paramètres graphiques
3 Il y a quelques semaines By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Comment réparer l'audio si vous n'entendez personne
3 Il y a quelques semaines By 尊渡假赌尊渡假赌尊渡假赌
WWE 2K25: Comment déverrouiller tout dans Myrise
4 Il y a quelques semaines By 尊渡假赌尊渡假赌尊渡假赌

Outils chauds

Bloc-notes++7.3.1

Bloc-notes++7.3.1

Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise

SublimeText3 version chinoise

Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1

Envoyer Studio 13.0.1

Puissant environnement de développement intégré PHP

Dreamweaver CS6

Dreamweaver CS6

Outils de développement Web visuel

SublimeText3 version Mac

SublimeText3 version Mac

Logiciel d'édition de code au niveau de Dieu (SublimeText3)

CLIP-BEVFormer : superviser explicitement la structure BEVFormer pour améliorer les performances de détection à longue traîne CLIP-BEVFormer : superviser explicitement la structure BEVFormer pour améliorer les performances de détection à longue traîne Mar 26, 2024 pm 12:41 PM

Écrit ci-dessus et compréhension personnelle de l'auteur : À l'heure actuelle, dans l'ensemble du système de conduite autonome, le module de perception joue un rôle essentiel. Le véhicule autonome roulant sur la route ne peut obtenir des résultats de perception précis que via le module de perception en aval. dans le système de conduite autonome, prend des jugements et des décisions comportementales opportuns et corrects. Actuellement, les voitures dotées de fonctions de conduite autonome sont généralement équipées d'une variété de capteurs d'informations de données, notamment des capteurs de caméra à vision panoramique, des capteurs lidar et des capteurs radar à ondes millimétriques pour collecter des informations selon différentes modalités afin d'accomplir des tâches de perception précises. L'algorithme de perception BEV basé sur la vision pure est privilégié par l'industrie en raison de son faible coût matériel et de sa facilité de déploiement, et ses résultats peuvent être facilement appliqués à diverses tâches en aval.

Implémentation d'algorithmes d'apprentissage automatique en C++ : défis et solutions courants Implémentation d'algorithmes d'apprentissage automatique en C++ : défis et solutions courants Jun 03, 2024 pm 01:25 PM

Les défis courants rencontrés par les algorithmes d'apprentissage automatique en C++ incluent la gestion de la mémoire, le multithread, l'optimisation des performances et la maintenabilité. Les solutions incluent l'utilisation de pointeurs intelligents, de bibliothèques de threads modernes, d'instructions SIMD et de bibliothèques tierces, ainsi que le respect des directives de style de codage et l'utilisation d'outils d'automatisation. Des cas pratiques montrent comment utiliser la bibliothèque Eigen pour implémenter des algorithmes de régression linéaire, gérer efficacement la mémoire et utiliser des opérations matricielles hautes performances.

Explorez les principes sous-jacents et la sélection d'algorithmes de la fonction de tri C++ Explorez les principes sous-jacents et la sélection d'algorithmes de la fonction de tri C++ Apr 02, 2024 pm 05:36 PM

La couche inférieure de la fonction de tri C++ utilise le tri par fusion, sa complexité est O(nlogn) et propose différents choix d'algorithmes de tri, notamment le tri rapide, le tri par tas et le tri stable.

L'intelligence artificielle peut-elle prédire la criminalité ? Explorez les capacités de CrimeGPT L'intelligence artificielle peut-elle prédire la criminalité ? Explorez les capacités de CrimeGPT Mar 22, 2024 pm 10:10 PM

La convergence de l’intelligence artificielle (IA) et des forces de l’ordre ouvre de nouvelles possibilités en matière de prévention et de détection de la criminalité. Les capacités prédictives de l’intelligence artificielle sont largement utilisées dans des systèmes tels que CrimeGPT (Crime Prediction Technology) pour prédire les activités criminelles. Cet article explore le potentiel de l’intelligence artificielle dans la prédiction de la criminalité, ses applications actuelles, les défis auxquels elle est confrontée et les éventuelles implications éthiques de cette technologie. Intelligence artificielle et prédiction de la criminalité : les bases CrimeGPT utilise des algorithmes d'apprentissage automatique pour analyser de grands ensembles de données, identifiant des modèles qui peuvent prédire où et quand les crimes sont susceptibles de se produire. Ces ensembles de données comprennent des statistiques historiques sur la criminalité, des informations démographiques, des indicateurs économiques, des tendances météorologiques, etc. En identifiant les tendances qui pourraient échapper aux analystes humains, l'intelligence artificielle peut donner du pouvoir aux forces de l'ordre.

Comparez des structures de données complexes à l'aide de la comparaison de fonctions Java Comparez des structures de données complexes à l'aide de la comparaison de fonctions Java Apr 19, 2024 pm 10:24 PM

Lors de l'utilisation de structures de données complexes en Java, Comparator est utilisé pour fournir un mécanisme de comparaison flexible. Les étapes spécifiques comprennent : la définition d’une classe de comparaison et la réécriture de la méthode de comparaison pour définir la logique de comparaison. Créez une instance de comparaison. Utilisez la méthode Collections.sort, en transmettant les instances de collection et de comparateur.

Algorithme de détection amélioré : pour la détection de cibles dans des images de télédétection optique haute résolution Algorithme de détection amélioré : pour la détection de cibles dans des images de télédétection optique haute résolution Jun 06, 2024 pm 12:33 PM

01Aperçu des perspectives Actuellement, il est difficile d'atteindre un équilibre approprié entre efficacité de détection et résultats de détection. Nous avons développé un algorithme YOLOv5 amélioré pour la détection de cibles dans des images de télédétection optique haute résolution, en utilisant des pyramides de caractéristiques multicouches, des stratégies de têtes de détection multiples et des modules d'attention hybrides pour améliorer l'effet du réseau de détection de cibles dans les images de télédétection optique. Selon l'ensemble de données SIMD, le mAP du nouvel algorithme est 2,2 % meilleur que YOLOv5 et 8,48 % meilleur que YOLOX, permettant ainsi d'obtenir un meilleur équilibre entre les résultats de détection et la vitesse. 02 Contexte et motivation Avec le développement rapide de la technologie de télédétection, les images de télédétection optique à haute résolution ont été utilisées pour décrire de nombreux objets à la surface de la Terre, notamment des avions, des voitures, des bâtiments, etc. Détection d'objets dans l'interprétation d'images de télédétection

Application d'algorithmes dans la construction de 58 plateformes de portraits Application d'algorithmes dans la construction de 58 plateformes de portraits May 09, 2024 am 09:01 AM

1. Contexte de la construction de la plateforme 58 Portraits Tout d'abord, je voudrais partager avec vous le contexte de la construction de la plateforme 58 Portraits. 1. La pensée traditionnelle de la plate-forme de profilage traditionnelle ne suffit plus. La création d'une plate-forme de profilage des utilisateurs s'appuie sur des capacités de modélisation d'entrepôt de données pour intégrer les données de plusieurs secteurs d'activité afin de créer des portraits d'utilisateurs précis. Elle nécessite également l'exploration de données pour comprendre le comportement et les intérêts des utilisateurs. et besoins, et fournir des capacités côté algorithmes ; enfin, il doit également disposer de capacités de plate-forme de données pour stocker, interroger et partager efficacement les données de profil utilisateur et fournir des services de profil. La principale différence entre une plate-forme de profilage d'entreprise auto-construite et une plate-forme de profilage de middle-office est que la plate-forme de profilage auto-construite dessert un seul secteur d'activité et peut être personnalisée à la demande. La plate-forme de mid-office dessert plusieurs secteurs d'activité et est complexe ; modélisation et offre des fonctionnalités plus générales. 2.58 Portraits d'utilisateurs de l'arrière-plan de la construction du portrait sur la plate-forme médiane 58

Structures de données et algorithmes Java : explication détaillée Structures de données et algorithmes Java : explication détaillée May 08, 2024 pm 10:12 PM

Les structures de données et les algorithmes sont à la base du développement Java. Cet article explore en profondeur les structures de données clés (telles que les tableaux, les listes chaînées, les arbres, etc.) et les algorithmes (tels que le tri, la recherche, les algorithmes graphiques, etc.) en Java. Ces structures sont illustrées par des exemples pratiques, notamment l'utilisation de tableaux pour stocker les scores, de listes chaînées pour gérer les listes de courses, de piles pour implémenter la récursion, de files d'attente pour synchroniser les threads, ainsi que d'arbres et de tables de hachage pour une recherche et une authentification rapides. Comprendre ces concepts vous permet d'écrire du code Java efficace et maintenable.

See all articles