Maison développement back-end C++ Comment faire de la synthèse et de la génération d'émotions en C++ ?

Comment faire de la synthèse et de la génération d'émotions en C++ ?

Aug 27, 2023 pm 12:25 PM
c++ synthèse affective génération d'émotions

Comment faire de la synthèse et de la génération démotions en C++ ?

Comment réaliser la synthèse et la génération d'émotions en C++ ?

Résumé : La synthèse et la génération d'émotions sont l'un des domaines d'application importants de la technologie de l'intelligence artificielle. Cet article présentera comment effectuer la synthèse et la génération d'émotions dans l'environnement de programmation C++, et fournira des exemples de code correspondants pour aider les lecteurs à mieux comprendre et appliquer ces technologies.

  1. Introduction
    La synthèse et la génération d'émotions sont des points chauds de la recherche dans la technologie de l'intelligence artificielle, qui sont principalement utilisées pour simuler l'expression émotionnelle humaine et les processus de génération d'émotions. Grâce aux techniques d’apprentissage automatique et de traitement du langage naturel, nous pouvons entraîner des modèles pour prédire les émotions et générer les expressions émotionnelles correspondantes. Dans cet article, nous présenterons comment implémenter la synthèse et la génération d'émotions via le langage de programmation C++.
  2. Synthèse émotionnelle
    La synthèse émotionnelle fait référence à la conversion d'un texte ou d'un discours en sortie avec les émotions correspondantes. Une approche courante consiste à utiliser un dictionnaire de sentiments pour faire correspondre les mots de sentiment en fonction du texte saisi et évaluer les scores de sentiment. Pour effectuer une synthèse d'émotions en C++, vous pouvez utiliser des bibliothèques open source telles que NLTK (Natural Language Toolkit) pour traiter les dictionnaires d'émotions.

Ce qui suit est un exemple de code C++ simple qui implémente la fonction de synthèse d'émotions basée sur le dictionnaire d'émotions :

#include <iostream>
#include <unordered_map>

// 情感词典
std::unordered_map<std::string, int> sentimentDict = {
    { "happy", 3 },
    { "sad", -2 },
    { "angry", -3 },
    // 其他情感词汇
};

// 情感合成函数
int sentimentSynthesis(const std::string& text) {
    int score = 0;
    
    // 按单词拆分文本
    std::string word;
    std::stringstream ss(text);
    while (ss >> word) {
        if (sentimentDict.find(word) != sentimentDict.end()) {
            score += sentimentDict[word];
        }
    }
    
    return score;
}

int main() {
    std::string text = "I feel happy and excited.";
    int score = sentimentSynthesis(text);
    
    std::cout << "Sentiment score: " << score << std::endl;
    
    return 0;
}
Copier après la connexion

Le code ci-dessus effectue la synthèse d'émotions en lisant le dictionnaire d'émotions, en faisant correspondre les mots d'émotion dans le texte avec le dictionnaire et en calculant le score d'émotion. Le dictionnaire des émotions n'est ici qu'un simple exemple. Dans les applications réelles, des vocabulaires d'émotions plus riches peuvent être utilisés en fonction des besoins.

  1. Génération d'émotions
    La génération d'émotions fait référence à la génération de texte ou de discours basé sur des émotions données. Pour la génération d'émotions en C++, vous pouvez utiliser des modèles génératifs tels que les réseaux de neurones récurrents (RNN) et les réseaux contradictoires génératifs (GAN).

Ce qui suit est un exemple de code C++ simple qui montre comment utiliser un réseau neuronal récurrent pour générer du texte basé sur les émotions :

#include <iostream>
#include <torch/torch.h>

// 循环神经网络模型
struct LSTMModel : torch::nn::Module {
    LSTMModel(int inputSize, int hiddenSize, int outputSize)
        : lstm(torch::nn::LSTMOptions(inputSize, hiddenSize).layers(1)),
          linear(hiddenSize, outputSize) {
        register_module("lstm", lstm);
        register_module("linear", linear);
    }

    torch::Tensor forward(torch::Tensor input) {
        auto lstmOut = lstm(input);
        auto output = linear(std::get<0>(lstmOut)[-1]);
        return output;
    }

    torch::nn::LSTM lstm;
    torch::nn::Linear linear;
};

int main() {
    torch::manual_seed(1);

    // 训练数据
    std::vector<int> happySeq = { 0, 1, 2, 3 }; // 对应编码
    std::vector<int> sadSeq = { 4, 5, 6, 3 };
    std::vector<int> angrySeq = { 7, 8, 9, 3 };
    std::vector<std::vector<int>> sequences = { happySeq, sadSeq, angrySeq };

    // 情感编码与文本映射
    std::unordered_map<int, std::string> sentimentDict = {
        { 0, "I" },
        { 1, "feel" },
        { 2, "happy" },
        { 3, "." },
        { 4, "I" },
        { 5, "feel" },
        { 6, "sad" },
        { 7, "I" },
        { 8, "feel" },
        { 9, "angry" }
    };

    // 构建训练集
    std::vector<torch::Tensor> inputs, targets;
    for (const auto& seq : sequences) {
        torch::Tensor input = torch::zeros({ seq.size()-1, 1, 1 });
        torch::Tensor target = torch::zeros({ seq.size()-1 });
        for (size_t i = 0; i < seq.size() - 1; ++i) {
            input[i][0][0] = seq[i];
            target[i] = seq[i + 1];
        }
        inputs.push_back(input);
        targets.push_back(target);
    }

    // 模型参数
    int inputSize = 1;
    int hiddenSize = 16;
    int outputSize = 10;

    // 模型
    LSTMModel model(inputSize, hiddenSize, outputSize);
    torch::optim::Adam optimizer(model.parameters(), torch::optim::AdamOptions(0.01));

    // 训练
    for (int epoch = 0; epoch < 100; ++epoch) {
        for (size_t i = 0; i < inputs.size(); ++i) {
            torch::Tensor input = inputs[i];
            torch::Tensor target = targets[i];

            optimizer.zero_grad();
            torch::Tensor output = model.forward(input);
            torch::Tensor loss = torch::nn::functional::nll_loss(torch::log_softmax(output, 1).squeeze(), target);
            loss.backward();
            optimizer.step();
        }
    }

    // 生成
    torch::Tensor input = torch::zeros({ 1, 1, 1 });
    input[0][0][0] = 0; // 输入情感:happy
    std::cout << sentimentDict[0] << " ";
    for (int i = 1; i < 5; ++i) {
        torch::Tensor output = model.forward(input);
        int pred = output.argmax().item<int>();
        std::cout << sentimentDict[pred] << " ";
        input[0][0][0] = pred;
    }
    std::cout << std::endl;

    return 0;
}
Copier après la connexion

Le code ci-dessus utilise la bibliothèque LibTorch pour implémenter un modèle simple de réseau neuronal récurrent. En entraînant une série de séquences d'émotions, la séquence de texte correspondante est générée en fonction de l'émotion. Pendant le processus de formation, nous utilisons une perte de log-vraisemblance négative pour mesurer la différence entre les résultats de la prédiction et la cible, et utilisons l'optimiseur Adam pour mettre à jour les paramètres du modèle.

  1. Résumé
    Cet article présente comment effectuer la synthèse et la génération d'émotions dans un environnement de programmation C++. La synthèse d'émotions utilise des dictionnaires émotionnels pour effectuer une analyse émotionnelle sur le texte afin d'atteindre la fonction de synthèse d'émotions ; la génération d'émotions utilise des modèles génératifs pour générer des séquences de texte basées sur les émotions ; Nous fournissons des exemples de code correspondants, dans l'espoir d'aider les lecteurs à mieux comprendre et appliquer la technologie de synthèse et de génération d'émotions. Bien entendu, il ne s’agit que d’un exemple simple, qui peut être optimisé et étendu en fonction des besoins spécifiques des applications réelles.

Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Déclaration de ce site Web
Le contenu de cet article est volontairement contribué par les internautes et les droits d'auteur appartiennent à l'auteur original. Ce site n'assume aucune responsabilité légale correspondante. Si vous trouvez un contenu suspecté de plagiat ou de contrefaçon, veuillez contacter admin@php.cn

Outils d'IA chauds

Undresser.AI Undress

Undresser.AI Undress

Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover

AI Clothes Remover

Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool

Undress AI Tool

Images de déshabillage gratuites

Clothoff.io

Clothoff.io

Dissolvant de vêtements AI

AI Hentai Generator

AI Hentai Generator

Générez AI Hentai gratuitement.

Article chaud

R.E.P.O. Crystals d'énergie expliqués et ce qu'ils font (cristal jaune)
3 Il y a quelques semaines By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Meilleurs paramètres graphiques
3 Il y a quelques semaines By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Comment réparer l'audio si vous n'entendez personne
3 Il y a quelques semaines By 尊渡假赌尊渡假赌尊渡假赌
WWE 2K25: Comment déverrouiller tout dans Myrise
4 Il y a quelques semaines By 尊渡假赌尊渡假赌尊渡假赌

Outils chauds

Bloc-notes++7.3.1

Bloc-notes++7.3.1

Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise

SublimeText3 version chinoise

Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1

Envoyer Studio 13.0.1

Puissant environnement de développement intégré PHP

Dreamweaver CS6

Dreamweaver CS6

Outils de développement Web visuel

SublimeText3 version Mac

SublimeText3 version Mac

Logiciel d'édition de code au niveau de Dieu (SublimeText3)

Comment implémenter le Strategy Design Pattern en C++ ? Comment implémenter le Strategy Design Pattern en C++ ? Jun 06, 2024 pm 04:16 PM

Les étapes pour implémenter le modèle de stratégie en C++ sont les suivantes : définir l'interface de stratégie et déclarer les méthodes qui doivent être exécutées. Créez des classes de stratégie spécifiques, implémentez l'interface respectivement et fournissez différents algorithmes. Utilisez une classe de contexte pour contenir une référence à une classe de stratégie concrète et effectuer des opérations via celle-ci.

Comment implémenter la gestion des exceptions imbriquées en C++ ? Comment implémenter la gestion des exceptions imbriquées en C++ ? Jun 05, 2024 pm 09:15 PM

La gestion des exceptions imbriquées est implémentée en C++ via des blocs try-catch imbriqués, permettant de déclencher de nouvelles exceptions dans le gestionnaire d'exceptions. Les étapes try-catch imbriquées sont les suivantes : 1. Le bloc try-catch externe gère toutes les exceptions, y compris celles levées par le gestionnaire d'exceptions interne. 2. Le bloc try-catch interne gère des types spécifiques d'exceptions, et si une exception hors de portée se produit, le contrôle est confié au gestionnaire d'exceptions externe.

Comment utiliser l'héritage de modèles C++ ? Comment utiliser l'héritage de modèles C++ ? Jun 06, 2024 am 10:33 AM

L'héritage de modèle C++ permet aux classes dérivées d'un modèle de réutiliser le code et les fonctionnalités du modèle de classe de base, ce qui convient à la création de classes avec la même logique de base mais des comportements spécifiques différents. La syntaxe d'héritage du modèle est : templateclassDerived:publicBase{}. Exemple : templateclassBase{};templateclassDerived:publicBase{};. Cas pratique : création de la classe dérivée Derived, héritage de la fonction de comptage de la classe de base Base et ajout de la méthode printCount pour imprimer le décompte actuel.

Pourquoi une erreur se produit-elle lors de l'installation d'une extension à l'aide de PECL dans un environnement Docker? Comment le résoudre? Pourquoi une erreur se produit-elle lors de l'installation d'une extension à l'aide de PECL dans un environnement Docker? Comment le résoudre? Apr 01, 2025 pm 03:06 PM

Causes et solutions pour les erreurs Lors de l'utilisation de PECL pour installer des extensions dans un environnement Docker Lorsque nous utilisons un environnement Docker, nous rencontrons souvent des maux de tête ...

Quel est le rôle de char dans les chaînes C Quel est le rôle de char dans les chaînes C Apr 03, 2025 pm 03:15 PM

En C, le type de char est utilisé dans les chaînes: 1. Stockez un seul caractère; 2. Utilisez un tableau pour représenter une chaîne et se terminer avec un terminateur nul; 3. Faire fonctionner via une fonction de fonctionnement de chaîne; 4. Lisez ou sortant une chaîne du clavier.

Comment gérer les exceptions C++ cross-thread ? Comment gérer les exceptions C++ cross-thread ? Jun 06, 2024 am 10:44 AM

En C++ multithread, la gestion des exceptions est implémentée via les mécanismes std::promise et std::future : utilisez l'objet promise pour enregistrer l'exception dans le thread qui lève l'exception. Utilisez un objet futur pour rechercher des exceptions dans le thread qui reçoit l'exception. Des cas pratiques montrent comment utiliser les promesses et les contrats à terme pour détecter et gérer les exceptions dans différents threads.

Quatre façons d'implémenter le multithreading dans le langage C Quatre façons d'implémenter le multithreading dans le langage C Apr 03, 2025 pm 03:00 PM

Le multithreading dans la langue peut considérablement améliorer l'efficacité du programme. Il existe quatre façons principales d'implémenter le multithreading dans le langage C: créer des processus indépendants: créer plusieurs processus en cours d'exécution indépendante, chaque processus a son propre espace mémoire. Pseudo-Multithreading: Créez plusieurs flux d'exécution dans un processus qui partagent le même espace mémoire et exécutent alternativement. Bibliothèque multi-thread: Utilisez des bibliothèques multi-threades telles que PTHEADS pour créer et gérer des threads, en fournissant des fonctions de fonctionnement de thread riches. Coroutine: une implémentation multi-thread légère qui divise les tâches en petites sous-tâches et les exécute tour à tour.

Comment calculer C-SUBScript 3 Indice 5 C-SUBScript 3 Indice Indice 5 Tutoriel d'algorithme Comment calculer C-SUBScript 3 Indice 5 C-SUBScript 3 Indice Indice 5 Tutoriel d'algorithme Apr 03, 2025 pm 10:33 PM

Le calcul de C35 est essentiellement des mathématiques combinatoires, représentant le nombre de combinaisons sélectionnées parmi 3 des 5 éléments. La formule de calcul est C53 = 5! / (3! * 2!), Qui peut être directement calculé par des boucles pour améliorer l'efficacité et éviter le débordement. De plus, la compréhension de la nature des combinaisons et la maîtrise des méthodes de calcul efficaces est cruciale pour résoudre de nombreux problèmes dans les domaines des statistiques de probabilité, de la cryptographie, de la conception d'algorithmes, etc.

See all articles