


Comment implémenter les fonctionnalités de polymorphisme et d'héritage en C++ ?
Comment implémenter les fonctionnalités de polymorphisme et d'héritage en C++ ?
En C++, le polymorphisme et l'héritage sont deux fonctionnalités importantes qui peuvent améliorer la lisibilité et la réutilisabilité du code. Cet article explique comment implémenter les fonctionnalités de polymorphisme et d'héritage en C++ et fournit des exemples de code.
1. Fonctionnalités d'héritage
L'héritage est l'un des concepts de base de la programmation orientée objet. Il nous permet de créer de nouvelles classes et d'hériter des propriétés et des méthodes des classes existantes.
En C++, utilisez le mot-clé "class" pour définir une classe et implémenter l'héritage via l'opérateur ":". Lors de la création d'une classe dérivée, vous pouvez choisir d'utiliser l'héritage public, l'héritage privé ou l'héritage protégé.
Exemple de code :
#include <iostream> using namespace std; // 基类 class Shape { public: virtual float getArea() = 0; // 纯虚函数 }; // 派生类 class Rectangle : public Shape { public: float width; float height; float getArea() { return width * height; } }; int main() { Rectangle rect; rect.width = 10; rect.height = 5; float area = rect.getArea(); cout << "矩形的面积:" << area << endl; return 0; }
Dans le code ci-dessus, nous créons une classe de base Shape, qui définit une fonction virtuelle pure getArea(). Ensuite, nous avons créé une classe dérivée Rectangle, qui hérite de la classe Shape et implémente la fonction getArea(). Dans la fonction principale, nous créons un objet Rectangle et calculons l'aire du rectangle.
2. Caractéristiques du polymorphisme
Le polymorphisme fait référence aux différentes manifestations d'objets. La même fonction peut montrer des comportements différents selon les types d'objets différents. En C++, le polymorphisme est obtenu grâce à des fonctions virtuelles et des pointeurs ou références aux classes de base.
Les fonctions virtuelles doivent être déclarées dans la classe de base et remplacées dans la classe dérivée. Lorsqu’un pointeur ou une référence de classe de base pointe vers un objet de classe dérivée, la fonction de la classe dérivée est appelée.
Exemple de code :
#include <iostream> using namespace std; // 基类 class Shape { public: virtual float getArea() = 0; // 纯虚函数 }; // 派生类1 class Rectangle : public Shape { public: float width; float height; float getArea() { return width * height; } }; // 派生类2 class Circle : public Shape { public: float radius; float getArea() { return 3.14 * radius * radius; } }; int main() { Rectangle rect; rect.width = 10; rect.height = 5; Circle circle; circle.radius = 4; Shape* shape1 = ▭ // 基类指针指向派生类对象 Shape* shape2 = &circle; // 基类指针指向派生类对象 float area1 = shape1->getArea(); float area2 = shape2->getArea(); cout << "矩形的面积:" << area1 << endl; cout << "圆的面积:" << area2 << endl; return 0; }
Dans le code ci-dessus, nous avons créé deux classes dérivées, Rectangle et Circle, qui héritent toutes deux de la classe de base Shape et implémentent la fonction getArea(). Dans la fonction principale, nous utilisons les pointeurs de classe de base shape1 et shape2 pour pointer respectivement vers les objets Rectangle et Circle, et appelons la fonction getArea() à travers eux pour obtenir le polymorphisme.
Résumé :
Grâce aux fonctionnalités d'héritage, nous pouvons créer des classes avec des propriétés et des méthodes communes en C++ et réaliser la réutilisation du code. Grâce au polymorphisme, nous pouvons appeler la fonction correspondante en fonction du type de l'objet réel dans le cas d'un pointeur ou d'une référence de classe de base. Cela améliore la flexibilité et l’évolutivité du code.
Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Outils d'IA chauds

Undresser.AI Undress
Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover
Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool
Images de déshabillage gratuites

Clothoff.io
Dissolvant de vêtements AI

AI Hentai Generator
Générez AI Hentai gratuitement.

Article chaud

Outils chauds

Bloc-notes++7.3.1
Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise
Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1
Puissant environnement de développement intégré PHP

Dreamweaver CS6
Outils de développement Web visuel

SublimeText3 version Mac
Logiciel d'édition de code au niveau de Dieu (SublimeText3)

Sujets chauds

Dans la programmation simultanée C++, la conception sécurisée des structures de données est cruciale : Section critique : utilisez un verrou mutex pour créer un bloc de code qui permet à un seul thread de s'exécuter en même temps. Verrouillage en lecture-écriture : permet à plusieurs threads de lire en même temps, mais à un seul thread d'écrire en même temps. Structures de données sans verrouillage : utilisez des opérations atomiques pour assurer la sécurité de la concurrence sans verrous. Cas pratique : File d'attente thread-safe : utilisez les sections critiques pour protéger les opérations de file d'attente et assurer la sécurité des threads.

La disposition des objets C++ et l'alignement de la mémoire optimisent l'efficacité de l'utilisation de la mémoire : Disposition des objets : les données membres sont stockées dans l'ordre de déclaration, optimisant ainsi l'utilisation de l'espace. Alignement de la mémoire : les données sont alignées en mémoire pour améliorer la vitesse d'accès. Le mot clé alignas spécifie un alignement personnalisé, tel qu'une structure CacheLine alignée sur 64 octets, pour améliorer l'efficacité de l'accès à la ligne de cache.

L'implémentation d'un comparateur personnalisé peut être réalisée en créant une classe qui surcharge Operator(), qui accepte deux paramètres et indique le résultat de la comparaison. Par exemple, la classe StringLengthComparator trie les chaînes en comparant leurs longueurs : créez une classe et surchargez Operator(), renvoyant une valeur booléenne indiquant le résultat de la comparaison. Utilisation de comparateurs personnalisés pour le tri dans les algorithmes de conteneurs. Les comparateurs personnalisés nous permettent de trier ou de comparer des données en fonction de critères personnalisés, même si nous devons utiliser des critères de comparaison personnalisés.

Les étapes pour implémenter le modèle de stratégie en C++ sont les suivantes : définir l'interface de stratégie et déclarer les méthodes qui doivent être exécutées. Créez des classes de stratégie spécifiques, implémentez l'interface respectivement et fournissez différents algorithmes. Utilisez une classe de contexte pour contenir une référence à une classe de stratégie concrète et effectuer des opérations via celle-ci.

Golang et C++ sont respectivement des langages de programmation de garbage collection et de gestion manuelle de la mémoire, avec des systèmes de syntaxe et de type différents. Golang implémente la programmation simultanée via Goroutine et C++ l'implémente via des threads. La gestion de la mémoire Golang est simple et le C++ offre de meilleures performances. Dans les cas pratiques, le code Golang est plus concis et le C++ présente des avantages évidents en termes de performances.

L'héritage et le polymorphisme affectent le couplage des classes : l'héritage augmente le couplage car la classe dérivée dépend de la classe de base. Le polymorphisme réduit le couplage car les objets peuvent répondre aux messages de manière cohérente via des fonctions virtuelles et des pointeurs de classe de base. Les meilleures pratiques incluent l'utilisation de l'héritage avec parcimonie, la définition d'interfaces publiques, l'évitement de l'ajout de données membres aux classes de base et le découplage des classes via l'injection de dépendances. Un exemple pratique montrant comment utiliser le polymorphisme et l'injection de dépendances pour réduire le couplage dans une application de compte bancaire.

Les pointeurs intelligents C++ implémentent une gestion automatique de la mémoire via le comptage de pointeurs, des destructeurs et des tables de fonctions virtuelles. Le nombre de pointeurs garde une trace du nombre de références et lorsque le nombre de références tombe à 0, le destructeur libère le pointeur d'origine. Les tables de fonctions virtuelles permettent le polymorphisme, permettant d'implémenter des comportements spécifiques pour différents types de pointeurs intelligents.

Il existe trois façons de copier un conteneur STL C++ : Utilisez le constructeur de copie pour copier le contenu du conteneur vers un nouveau conteneur. Utilisez l'opérateur d'affectation pour copier le contenu du conteneur vers le conteneur cible. Utilisez l'algorithme std::copy pour copier les éléments dans le conteneur.
