


Calculer l'histogramme d'un ensemble de données à l'aide de NumPy en Python
Un histogramme est une représentation graphique de la distribution d'un ensemble de données. Il représente les données sous la forme d'une série de graphiques à barres, où chaque barre représente une plage de valeurs de données et la hauteur de la barre représente la fréquence des valeurs de données définies dans cette plage.
Ceux-ci sont principalement utilisés pour représenter la répartition de données numériques, telles que la répartition des notes dans une classe, la répartition de la population ou la répartition des revenus des employés, etc.
Dans l'histogramme, l'axe des x représente la plage de valeurs de données, divisée en intervalles et l'axe des y représente la fréquence de la plage de valeurs de données dans chaque bac. Les histogrammes peuvent être normalisés en divisant la fréquence de chaque bac par le. valeurs totales des données, ce qui donne l'histogramme de fréquence relative où l'axe des y représente les valeurs des données de chaque bac.
Calcul de l'histogramme à l'aide de Python Numpy
En python, pour créer les histogrammes, nous avons les bibliothèques numpy, matplotlib et seaborn. Dans Numpy, nous avons la fonction nommée histogram() pour travailler avec les données de l'histogramme.
Grammaire
Voici la syntaxe de création des histogrammes pour la plage de données donnée.
numpy.histogram(arr, bins, range, normed, weights, density)
Où,
est :Où,
arr est le tableau d'entrée
bins est le nombre de barres dans l'histogramme utilisé pour représenter les données
range définit la plage de valeurs dans l'histogramme
normed Paramètre de densité de préférence
weights est un paramètre facultatif pour le poids de chaque valeur de données
Density est un paramètre qui normalise les données de l'histogramme en une densité de probabilité.
La sortie de la fonction histogramme sera un tuple contenant le nombre d'histogrammes et les bords des bacs.
Exemple
Dans l'exemple ci-dessous, nous créons un histogramme à l'aide de la fonction histogram() de Numpy. Ici, nous prenons un tableau comme paramètre d'entrée et définissons les bacs sur 10 afin que l'histogramme soit créé avec 10 bacs et que le reste des paramètres puisse être conservé comme aucun.
import numpy as np arr = np.array([10,20,25,40,35,23]) hist = np.histogram(arr,bins = 10) print("The histogram created:",hist)
Sortie
The histogram created: (array([1, 0, 0, 1, 1, 1, 0, 0, 1, 1], dtype=int64), array([10., 13., 16., 19., 22., 25., 28., 31., 34., 37., 40.]))
Exemple
Voyons un exemple pour comprendre la fonction histogram() de la bibliothèque numpy.
import numpy as np arr = np.array([[20,20,25],[40,35,23],[34,22,1]]) hist = np.histogram(arr,bins = 20) print("The histogram created:",hist)
Sortie
The histogram created: (array([1, 0, 0, 0, 0, 0, 0, 0, 0, 2, 1, 1, 1, 0, 0, 0, 1, 1, 0, 1], dtype=int64), array([ 1. , 2.95, 4.9 , 6.85, 8.8 , 10.75, 12.7 , 14.65, 16.6 , 18.55, 20.5 , 22.45, 24.4 , 26.35, 28.3 , 30.25, 32.2 , 34.15, 36.1 , 38.05, 40. ]))</p><p>
Exemple
Dans cet exemple, nous créons un histogramme en spécifiant les bacs et la plage de données à utiliser. Le code suivant peut être utilisé comme référence.
import numpy as np arr = np.array([[20,20,25],[40,35,23],[34,22,1]]) hist = np.histogram(arr,bins = 20, range = (1,10)) print("The histogram created:", hist)
Sortie
The histogram created: (array([1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,0, 0, 0, 0], dtype=int64), array([ 1. , 1.45, 1.9 , 2.35, 2.8 , 3.25, 3.7 ,4.15, 4.6 , 5.05, 5.5 , 5.95, 6.4 , 6.85, 7.3 , 7.75, 8.2 , 8.65, 9.1 , 9.55, 10. ]))
Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Outils d'IA chauds

Undresser.AI Undress
Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover
Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool
Images de déshabillage gratuites

Clothoff.io
Dissolvant de vêtements AI

AI Hentai Generator
Générez AI Hentai gratuitement.

Article chaud

Outils chauds

Bloc-notes++7.3.1
Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise
Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1
Puissant environnement de développement intégré PHP

Dreamweaver CS6
Outils de développement Web visuel

SublimeText3 version Mac
Logiciel d'édition de code au niveau de Dieu (SublimeText3)

Numpy est une bibliothèque mathématique importante en Python. Elle fournit des opérations de tableau efficaces et des fonctions de calcul scientifique et est largement utilisée dans l'analyse de données, l'apprentissage automatique, l'apprentissage profond et d'autres domaines. Lors de l'utilisation de numpy, nous devons souvent vérifier le numéro de version de numpy pour déterminer les fonctions prises en charge par l'environnement actuel. Cet article explique comment vérifier rapidement la version numpy et fournit des exemples de code spécifiques. Méthode 1 : utilisez l'attribut __version__ fourni avec numpy Le module numpy est livré avec un __.

La multiplication matricielle générale (GEMM) est un élément essentiel de nombreuses applications et algorithmes, et constitue également l'un des indicateurs importants pour évaluer les performances du matériel informatique. Une recherche approfondie et l'optimisation de la mise en œuvre de GEMM peuvent nous aider à mieux comprendre le calcul haute performance et la relation entre les systèmes logiciels et matériels. En informatique, une optimisation efficace de GEMM peut augmenter la vitesse de calcul et économiser des ressources, ce qui est crucial pour améliorer les performances globales d’un système informatique. Une compréhension approfondie du principe de fonctionnement et de la méthode d'optimisation de GEMM nous aidera à mieux utiliser le potentiel du matériel informatique moderne et à fournir des solutions plus efficaces pour diverses tâches informatiques complexes. En optimisant les performances de GEMM

WORD est un traitement de texte puissant. Nous pouvons utiliser Word pour éditer divers textes. Dans les tableaux Excel, nous maîtrisons les méthodes de calcul d'addition, de soustraction et de multiplicateurs. Ainsi, si nous avons besoin de calculer l'addition de valeurs numériques dans les tableaux Word, Comment soustraire le multiplicateur ? Puis-je utiliser uniquement une calculatrice pour le calculer ? La réponse est bien sûr non, WORD peut aussi le faire. Aujourd'hui, je vais vous apprendre à utiliser des formules pour calculer des opérations de base telles que l'addition, la soustraction, la multiplication et la division dans des tableaux dans des documents Word. Apprenons ensemble. Alors, aujourd'hui, permettez-moi de vous montrer en détail comment calculer l'addition, la soustraction, la multiplication et la division dans un document WORD ? Étape 1 : ouvrez un WORD, cliquez sur [Tableau] sous [Insérer] dans la barre d'outils et insérez un tableau dans le menu déroulant.

Comment mettre à niveau la version numpy : tutoriel facile à suivre, nécessite des exemples de code concrets Introduction : NumPy est une bibliothèque Python importante utilisée pour le calcul scientifique. Il fournit un puissant objet tableau multidimensionnel et une série de fonctions associées qui peuvent être utilisées pour effectuer des opérations numériques efficaces. À mesure que de nouvelles versions sont publiées, de nouvelles fonctionnalités et corrections de bugs sont constamment disponibles. Cet article décrira comment mettre à niveau votre bibliothèque NumPy installée pour obtenir les dernières fonctionnalités et résoudre les problèmes connus. Étape 1 : Vérifiez la version actuelle de NumPy au début

Apprenez étape par étape à installer NumPy dans PyCharm et à utiliser pleinement ses puissantes fonctions Préface : NumPy est l'une des bibliothèques de base pour le calcul scientifique en Python. Elle fournit des objets de tableau multidimensionnels hautes performances et diverses fonctions nécessaires à son exécution. opérations de base sur la fonction des tableaux. Il s’agit d’une partie importante de la plupart des projets de science des données et d’apprentissage automatique. Cet article vous expliquera comment installer NumPy dans PyCharm et démontrera ses puissantes fonctionnalités à travers des exemples de code spécifiques. Étape 1 : Installez PyCharm. Tout d'abord, nous

Le secret pour désinstaller rapidement la bibliothèque NumPy est révélé. Des exemples de code spécifiques sont nécessaires. NumPy est une puissante bibliothèque de calcul scientifique Python largement utilisée dans des domaines tels que l'analyse de données, le calcul scientifique et l'apprentissage automatique. Cependant, nous pouvons parfois être amenés à désinstaller la bibliothèque NumPy, que ce soit pour mettre à jour la version ou pour d'autres raisons. Cet article présentera quelques méthodes pour désinstaller rapidement la bibliothèque NumPy et fournira des exemples de code spécifiques. Méthode 1 : utiliser pip pour désinstaller pip est un outil de gestion de packages Python qui peut être utilisé pour installer, mettre à niveau et

Guide d'installation de Numpy : Un article pour résoudre les problèmes d'installation, nécessite des exemples de code spécifiques Introduction : Numpy est une puissante bibliothèque de calcul scientifique en Python. Elle fournit des objets et des outils de tableau multidimensionnels efficaces pour exploiter les données de tableau. Cependant, pour les débutants, l'installation de Numpy peut créer une certaine confusion. Cet article vous fournira un guide d'installation de Numpy pour vous aider à résoudre rapidement les problèmes d'installation. 1. Installez l'environnement Python : Avant d'installer Numpy, vous devez d'abord vous assurer que Py est installé.

Avec le développement rapide de domaines tels que la science des données, l’apprentissage automatique et l’apprentissage profond, Python est devenu un langage courant pour l’analyse et la modélisation des données. En Python, NumPy (abréviation de NumericalPython) est une bibliothèque très importante car elle fournit un ensemble d'objets tableaux multidimensionnels efficaces et constitue la base de nombreuses autres bibliothèques telles que pandas, SciPy et scikit-learn. Dans le processus d'utilisation de NumPy, vous risquez de rencontrer des problèmes de compatibilité entre différentes versions, puis
