Table des matières
Calcul de l'histogramme à l'aide de Python Numpy
Grammaire
Exemple
Sortie
Maison développement back-end Tutoriel Python Calculer l'histogramme d'un ensemble de données à l'aide de NumPy en Python

Calculer l'histogramme d'un ensemble de données à l'aide de NumPy en Python

Aug 28, 2023 pm 08:01 PM
numpy 计算 Histogramme

Calculer lhistogramme dun ensemble de données à laide de NumPy en Python

Un histogramme est une représentation graphique de la distribution d'un ensemble de données. Il représente les données sous la forme d'une série de graphiques à barres, où chaque barre représente une plage de valeurs de données et la hauteur de la barre représente la fréquence des valeurs de données définies dans cette plage.

Ceux-ci sont principalement utilisés pour représenter la répartition de données numériques, telles que la répartition des notes dans une classe, la répartition de la population ou la répartition des revenus des employés, etc.

Dans l'histogramme, l'axe des x représente la plage de valeurs de données, divisée en intervalles et l'axe des y représente la fréquence de la plage de valeurs de données dans chaque bac. Les histogrammes peuvent être normalisés en divisant la fréquence de chaque bac par le. valeurs totales des données, ce qui donne l'histogramme de fréquence relative où l'axe des y représente les valeurs des données de chaque bac.

Calcul de l'histogramme à l'aide de Python Numpy

En python, pour créer les histogrammes, nous avons les bibliothèques numpy, matplotlib et seaborn. Dans Numpy, nous avons la fonction nommée histogram() pour travailler avec les données de l'histogramme.

Grammaire

Voici la syntaxe de création des histogrammes pour la plage de données donnée.

numpy.histogram(arr, bins, range, normed, weights, density)
Copier après la connexion
La traduction chinoise de

Où,

est :

Où,

  • arr est le tableau d'entrée

  • bins est le nombre de barres dans l'histogramme utilisé pour représenter les données

  • range définit la plage de valeurs dans l'histogramme

  • normed Paramètre de densité de préférence

  • weights est un paramètre facultatif pour le poids de chaque valeur de données

  • Density est un paramètre qui normalise les données de l'histogramme en une densité de probabilité.

La sortie de la fonction histogramme sera un tuple contenant le nombre d'histogrammes et les bords des bacs.

Exemple

Dans l'exemple ci-dessous, nous créons un histogramme à l'aide de la fonction histogram() de Numpy. Ici, nous prenons un tableau comme paramètre d'entrée et définissons les bacs sur 10 afin que l'histogramme soit créé avec 10 bacs et que le reste des paramètres puisse être conservé comme aucun.

import numpy as np
arr = np.array([10,20,25,40,35,23])
hist = np.histogram(arr,bins = 10)
print("The histogram created:",hist)
Copier après la connexion

Sortie

The histogram created: (array([1, 0, 0, 1, 1, 1, 0, 0, 1, 1], dtype=int64), array([10., 13., 16., 19., 22., 25., 28., 31., 34., 37., 40.]))
Copier après la connexion

Exemple

Voyons un exemple pour comprendre la fonction histogram() de la bibliothèque numpy.

import numpy as np
arr = np.array([[20,20,25],[40,35,23],[34,22,1]])
hist = np.histogram(arr,bins = 20)
print("The histogram created:",hist)
Copier après la connexion

Sortie

The histogram created: (array([1, 0, 0, 0, 0, 0, 0, 0, 0, 2, 1, 1, 1, 0, 0, 0,
1, 1, 0, 1],
 dtype=int64), array([ 1. , 2.95, 4.9 , 6.85, 8.8 , 10.75, 12.7 ,
14.65, 16.6 ,
 18.55, 20.5 , 22.45, 24.4 , 26.35, 28.3 , 30.25, 32.2 , 34.15,
 36.1 , 38.05, 40. ]))</p><p>
Copier après la connexion

Exemple

Dans cet exemple, nous créons un histogramme en spécifiant les bacs et la plage de données à utiliser. Le code suivant peut être utilisé comme référence.

import numpy as np
arr = np.array([[20,20,25],[40,35,23],[34,22,1]])
hist = np.histogram(arr,bins = 20, range = (1,10))
print("The histogram created:", hist)
Copier après la connexion

Sortie

The histogram created: (array([1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,0, 0, 0, 0],
 dtype=int64), array([ 1. , 1.45, 1.9 , 2.35, 2.8 , 3.25, 3.7 ,4.15, 4.6 ,
 5.05, 5.5 , 5.95, 6.4 , 6.85, 7.3 , 7.75, 8.2 , 8.65,
 9.1 , 9.55, 10. ]))
Copier après la connexion

Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Déclaration de ce site Web
Le contenu de cet article est volontairement contribué par les internautes et les droits d'auteur appartiennent à l'auteur original. Ce site n'assume aucune responsabilité légale correspondante. Si vous trouvez un contenu suspecté de plagiat ou de contrefaçon, veuillez contacter admin@php.cn

Outils d'IA chauds

Undresser.AI Undress

Undresser.AI Undress

Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover

AI Clothes Remover

Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool

Undress AI Tool

Images de déshabillage gratuites

Clothoff.io

Clothoff.io

Dissolvant de vêtements AI

AI Hentai Generator

AI Hentai Generator

Générez AI Hentai gratuitement.

Article chaud

R.E.P.O. Crystals d'énergie expliqués et ce qu'ils font (cristal jaune)
3 Il y a quelques semaines By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Meilleurs paramètres graphiques
3 Il y a quelques semaines By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Comment réparer l'audio si vous n'entendez personne
3 Il y a quelques semaines By 尊渡假赌尊渡假赌尊渡假赌
WWE 2K25: Comment déverrouiller tout dans Myrise
3 Il y a quelques semaines By 尊渡假赌尊渡假赌尊渡假赌

Outils chauds

Bloc-notes++7.3.1

Bloc-notes++7.3.1

Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise

SublimeText3 version chinoise

Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1

Envoyer Studio 13.0.1

Puissant environnement de développement intégré PHP

Dreamweaver CS6

Dreamweaver CS6

Outils de développement Web visuel

SublimeText3 version Mac

SublimeText3 version Mac

Logiciel d'édition de code au niveau de Dieu (SublimeText3)

Comment vérifier rapidement la version numpy Comment vérifier rapidement la version numpy Jan 19, 2024 am 08:23 AM

Numpy est une bibliothèque mathématique importante en Python. Elle fournit des opérations de tableau efficaces et des fonctions de calcul scientifique et est largement utilisée dans l'analyse de données, l'apprentissage automatique, l'apprentissage profond et d'autres domaines. Lors de l'utilisation de numpy, nous devons souvent vérifier le numéro de version de numpy pour déterminer les fonctions prises en charge par l'environnement actuel. Cet article explique comment vérifier rapidement la version numpy et fournit des exemples de code spécifiques. Méthode 1 : utilisez l'attribut __version__ fourni avec numpy Le module numpy est livré avec un __.

La multiplication matricielle universelle de CUDA : de l'entrée à la maîtrise ! La multiplication matricielle universelle de CUDA : de l'entrée à la maîtrise ! Mar 25, 2024 pm 12:30 PM

La multiplication matricielle générale (GEMM) est un élément essentiel de nombreuses applications et algorithmes, et constitue également l'un des indicateurs importants pour évaluer les performances du matériel informatique. Une recherche approfondie et l'optimisation de la mise en œuvre de GEMM peuvent nous aider à mieux comprendre le calcul haute performance et la relation entre les systèmes logiciels et matériels. En informatique, une optimisation efficace de GEMM peut augmenter la vitesse de calcul et économiser des ressources, ce qui est crucial pour améliorer les performances globales d’un système informatique. Une compréhension approfondie du principe de fonctionnement et de la méthode d'optimisation de GEMM nous aidera à mieux utiliser le potentiel du matériel informatique moderne et à fournir des solutions plus efficaces pour diverses tâches informatiques complexes. En optimisant les performances de GEMM

Comment calculer l'addition, la soustraction, la multiplication et la division dans un document Word Comment calculer l'addition, la soustraction, la multiplication et la division dans un document Word Mar 19, 2024 pm 08:13 PM

WORD est un traitement de texte puissant. Nous pouvons utiliser Word pour éditer divers textes. Dans les tableaux Excel, nous maîtrisons les méthodes de calcul d'addition, de soustraction et de multiplicateurs. Ainsi, si nous avons besoin de calculer l'addition de valeurs numériques dans les tableaux Word, Comment soustraire le multiplicateur ? Puis-je utiliser uniquement une calculatrice pour le calculer ? La réponse est bien sûr non, WORD peut aussi le faire. Aujourd'hui, je vais vous apprendre à utiliser des formules pour calculer des opérations de base telles que l'addition, la soustraction, la multiplication et la division dans des tableaux dans des documents Word. Apprenons ensemble. Alors, aujourd'hui, permettez-moi de vous montrer en détail comment calculer l'addition, la soustraction, la multiplication et la division dans un document WORD ? Étape 1 : ouvrez un WORD, cliquez sur [Tableau] sous [Insérer] dans la barre d'outils et insérez un tableau dans le menu déroulant.

Mise à niveau de la version numpy : un guide détaillé et facile à suivre Mise à niveau de la version numpy : un guide détaillé et facile à suivre Feb 25, 2024 pm 11:39 PM

Comment mettre à niveau la version numpy : tutoriel facile à suivre, nécessite des exemples de code concrets Introduction : NumPy est une bibliothèque Python importante utilisée pour le calcul scientifique. Il fournit un puissant objet tableau multidimensionnel et une série de fonctions associées qui peuvent être utilisées pour effectuer des opérations numériques efficaces. À mesure que de nouvelles versions sont publiées, de nouvelles fonctionnalités et corrections de bugs sont constamment disponibles. Cet article décrira comment mettre à niveau votre bibliothèque NumPy installée pour obtenir les dernières fonctionnalités et résoudre les problèmes connus. Étape 1 : Vérifiez la version actuelle de NumPy au début

Guide étape par étape sur la façon d'installer NumPy dans PyCharm et de tirer le meilleur parti de ses fonctionnalités Guide étape par étape sur la façon d'installer NumPy dans PyCharm et de tirer le meilleur parti de ses fonctionnalités Feb 18, 2024 pm 06:38 PM

Apprenez étape par étape à installer NumPy dans PyCharm et à utiliser pleinement ses puissantes fonctions Préface : NumPy est l'une des bibliothèques de base pour le calcul scientifique en Python. Elle fournit des objets de tableau multidimensionnels hautes performances et diverses fonctions nécessaires à son exécution. opérations de base sur la fonction des tableaux. Il s’agit d’une partie importante de la plupart des projets de science des données et d’apprentissage automatique. Cet article vous expliquera comment installer NumPy dans PyCharm et démontrera ses puissantes fonctionnalités à travers des exemples de code spécifiques. Étape 1 : Installez PyCharm. Tout d'abord, nous

Découvrez la méthode secrète pour désinstaller rapidement la bibliothèque NumPy Découvrez la méthode secrète pour désinstaller rapidement la bibliothèque NumPy Jan 26, 2024 am 08:32 AM

Le secret pour désinstaller rapidement la bibliothèque NumPy est révélé. Des exemples de code spécifiques sont nécessaires. NumPy est une puissante bibliothèque de calcul scientifique Python largement utilisée dans des domaines tels que l'analyse de données, le calcul scientifique et l'apprentissage automatique. Cependant, nous pouvons parfois être amenés à désinstaller la bibliothèque NumPy, que ce soit pour mettre à jour la version ou pour d'autres raisons. Cet article présentera quelques méthodes pour désinstaller rapidement la bibliothèque NumPy et fournira des exemples de code spécifiques. Méthode 1 : utiliser pip pour désinstaller pip est un outil de gestion de packages Python qui peut être utilisé pour installer, mettre à niveau et

Guide d'installation de Numpy : résoudre les problèmes d'installation en un seul article Guide d'installation de Numpy : résoudre les problèmes d'installation en un seul article Feb 21, 2024 pm 08:15 PM

Guide d'installation de Numpy : Un article pour résoudre les problèmes d'installation, nécessite des exemples de code spécifiques Introduction : Numpy est une puissante bibliothèque de calcul scientifique en Python. Elle fournit des objets et des outils de tableau multidimensionnels efficaces pour exploiter les données de tableau. Cependant, pour les débutants, l'installation de Numpy peut créer une certaine confusion. Cet article vous fournira un guide d'installation de Numpy pour vous aider à résoudre rapidement les problèmes d'installation. 1. Installez l'environnement Python : Avant d'installer Numpy, vous devez d'abord vous assurer que Py est installé.

Guide de sélection de version de Numpy : pourquoi mettre à niveau ? Guide de sélection de version de Numpy : pourquoi mettre à niveau ? Jan 19, 2024 am 09:34 AM

Avec le développement rapide de domaines tels que la science des données, l’apprentissage automatique et l’apprentissage profond, Python est devenu un langage courant pour l’analyse et la modélisation des données. En Python, NumPy (abréviation de NumericalPython) est une bibliothèque très importante car elle fournit un ensemble d'objets tableaux multidimensionnels efficaces et constitue la base de nombreuses autres bibliothèques telles que pandas, SciPy et scikit-learn. Dans le processus d'utilisation de NumPy, vous risquez de rencontrer des problèmes de compatibilité entre différentes versions, puis

See all articles