


Trouver le plus grand sous-arbre de recherche binaire dans un arbre binaire donné - Épisode 1 en C++
Dans ce problème, on nous donne un arbre binaire BT. Notre tâche est de trouver le plus grand sous-arbre de recherche binaire dans un arbre binaire donné.
L'arbre binaire est une structure de données spéciale utilisée pour le stockage de données. Les arbres binaires ont une condition spéciale selon laquelle chaque nœud peut avoir au plus deux nœuds enfants.
L'arbre de recherche binaire (BST) est un arbre qui satisfait aux propriétés suivantes :
La valeur clé du sous-arbre gauche est plus petite que la valeur clé de son nœud parent (nœud racine).
La valeur clé du sous-arbre droit est supérieure ou égale à la valeur clé de son nœud parent (nœud racine).
Prenons un exemple pour comprendre ce problème,
Entrée :
Sortie : 3
Explication
Full binary tree is a BST.
Solution
La façon simple de résoudre le problème est de faire le arbre en cours Parcours de la commande. Pour chaque nœud de l'arbre, vérifiez si son sous-arbre est un arbre de recherche binaire. Enfin, la taille du plus grand sous-arbre de recherche binaire est renvoyée.
Exemple
Exemple de programme pour illustrer le fonctionnement de notre solution
#include<bits/stdc++.h> using namespace std; class node{ public: int data; node* left; node* right; node(int data){ this->data = data; this->left = NULL; this->right = NULL; } }; int findTreeSize(node* node) { if (node == NULL) return 0; else return(findTreeSize(node->left) + findTreeSize(node->right) + 1); } int isBSTree(struct node* node) { if (node == NULL) return 1; if (node->left != NULL && node->left->data > node->data) return 0; if (node->right != NULL && node->right->data < node->data) return 0; if (!isBSTree(node->left) || !isBSTree(node->right)) return 0; return 1; } int findlargestBSTSize(struct node *root) { if (isBSTree(root)){ return findTreeSize(root); } else return max(findlargestBSTSize(root->left), findlargestBSTSize(root->right)); } int main() { node *root = new node(5); root->left = new node(2); root->right = new node(8); root->left->left = new node(1); root->left->right = new node(4); cout<<"The size of the largest possible BST is "<<findlargestBSTSize(root); return 0; }
Output
The size of the largest possible BST is 5
Une autre approche
Une autre façon de résoudre ce problème est de parcourir l'arbre depuis le bas et de vérifier à travers ses nœuds enfants s'il s'agit bien de BST. Pour ce faire, nous suivrons les éléments suivants : Si
est BST.
Dans le cas du sous-arbre de gauche, la valeur du plus grand élément.
Dans le cas du sous-arbre de droite, la valeur du plus petit élément. Ces valeurs doivent être comparées au nœud actuel pour vérifier le BST.
De plus, la taille du BST maximum sera mise à jour en la comparant avec la taille du BST actuel.
Exemple
#include<bits/stdc++.h> using namespace std; class node{ public: int data; node* left; node* right; node(int data){ this->data = data; this->left = NULL; this->right = NULL; } }; int findlargestBSTSizeRec(node* node, int *minValRsubTree, int *maxValLsubTree, int *maxBSTSize, bool *isBSTree) { if (node == NULL){ *isBSTree = true; return 0; } int min = INT_MAX; bool left_flag = false; bool right_flag = false; int leftSubtreeSize,rightSubTreeSize; *maxValLsubTree = INT_MIN; leftSubtreeSize = findlargestBSTSizeRec(node->left, minValRsubTree, maxValLsubTree, maxBSTSize, isBSTree); if (*isBSTree == true && node->data > *maxValLsubTree) left_flag = true; min = *minValRsubTree; *minValRsubTree = INT_MAX; rightSubTreeSize = findlargestBSTSizeRec(node->right, minValRsubTree, maxValLsubTree, maxBSTSize, isBSTree); if (*isBSTree == true && node->data < *minValRsubTree) right_flag = true; if (min < *minValRsubTree) *minValRsubTree = min; if (node->data < *minValRsubTree) *minValRsubTree = node->data; if (node->data > *maxValLsubTree) *maxValLsubTree = node->data; if(left_flag && right_flag){ if (leftSubtreeSize + rightSubTreeSize + 1 > *maxBSTSize) *maxBSTSize = (leftSubtreeSize + rightSubTreeSize + 1); return (leftSubtreeSize + rightSubTreeSize + 1); } else{ *isBSTree = false; return 0; } } int findlargestBSTSize(node* node){ int min = INT_MAX; int max = INT_MIN; int largestBSTSize = 0; bool isBST = false; findlargestBSTSizeRec(node, &min, &max, &largestBSTSize, &isBST); return largestBSTSize; } int main(){ node *root = new node(5); root->left = new node(2); root->right = new node(8); root->left->left = new node(1); root->left->right = new node(4); cout<<"The Size of the largest BST is "<<findlargestBSTSize(root); return 0; }
Sortie
The Size of the largest BST is 5
Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Outils d'IA chauds

Undresser.AI Undress
Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover
Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool
Images de déshabillage gratuites

Clothoff.io
Dissolvant de vêtements AI

AI Hentai Generator
Générez AI Hentai gratuitement.

Article chaud

Outils chauds

Bloc-notes++7.3.1
Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise
Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1
Puissant environnement de développement intégré PHP

Dreamweaver CS6
Outils de développement Web visuel

SublimeText3 version Mac
Logiciel d'édition de code au niveau de Dieu (SublimeText3)

Sujets chauds



Cet article explique la bibliothèque de modèles standard C (STL), en se concentrant sur ses composants principaux: conteneurs, itérateurs, algorithmes et fonctors. Il détaille comment ces interagissent pour permettre la programmation générique, l'amélioration de l'efficacité du code et de la lisibilité

Cet article détaille l'utilisation efficace de l'algorithme STL en c. Il met l'accent sur le choix de la structure des données (vecteurs vs listes), l'analyse de la complexité des algorithmes (par exemple, STD :: Srieur vs std :: partial_sort), l'utilisation des itérateurs et l'exécution parallèle. Pièges communs comme

Cet article détaille la gestion efficace des exceptions en C, couvrant les mécanismes d'essai, de capture et de lancement. Il met l'accent sur les meilleures pratiques comme RAII, en évitant les blocs de capture inutiles et en enregistrant des exceptions pour un code robuste. L'article aborde également Perf

L'article discute de l'utilisation de Move Semantics en C pour améliorer les performances en évitant la copie inutile. Il couvre la mise en œuvre de constructeurs de déplace

Les plages de c 20 améliorent la manipulation des données avec l'expressivité, la composibilité et l'efficacité. Ils simplifient les transformations complexes et s'intègrent dans les bases de code existantes pour de meilleures performances et maintenabilité.

L'article traite de Dynamic Dispatch in C, ses coûts de performance et les stratégies d'optimisation. Il met en évidence les scénarios où la répartition dynamique a un impact

L'article discute de l'utilisation efficace des références de référence en C pour la sémantique de déplacement, le transfert parfait et la gestion des ressources, mettant en évidence les meilleures pratiques et les améliorations des performances. (159 caractères)

C La gestion de la mémoire utilise des pointeurs nouveaux, supprimés et intelligents. L'article traite du manuel par rapport à la gestion automatisée et de la façon dont les pointeurs intelligents empêchent les fuites de mémoire.
