Table des matières
Problèmes de données
Performances de stockage
Orchestration GPU
Maison Périphériques technologiques IA Comment maximiser les performances du GPU

Comment maximiser les performances du GPU

Aug 31, 2023 pm 05:09 PM
人工智能

La méthode par défaut pour accélérer un projet d'IA consiste à augmenter la taille de votre cluster GPU. Cependant, à mesure que l’offre de GPU devient de plus en plus limitée, les coûts deviennent de plus en plus élevés. Il est compréhensible que de nombreuses entreprises d’IA consacrent plus de 80 % des capitaux levés aux ressources informatiques. Les GPU sont la clé de l’infrastructure de l’IA et devraient bénéficier d’une part budgétaire aussi importante que possible. Cependant, en plus de ces coûts élevés, il existe d'autres moyens d'améliorer les performances du GPU qui doivent être pris en compte, et ils deviennent de plus en plus urgents

Comment maximiser les performances du GPU

Développer un cluster GPU n'est pas une tâche facile, d'autant plus que l'expansion violente de l'intelligence artificielle générative conduit à une pénurie de GPU. Le GPU NVIDIA A100 a été l'un des premiers GPU concernés et est désormais extrêmement rare, certaines versions ayant des délais de livraison allant jusqu'à un an. Ces défis liés à la chaîne d’approvisionnement ont contraint de nombreuses personnes à considérer le H100 haut de gamme comme une alternative, mais évidemment à un prix plus élevé. Pour les entrepreneurs qui investissent dans leur propre infrastructure afin de créer la prochaine grande solution d'IA générative pour leur secteur, il est nécessaire d'exploiter jusqu'à la dernière goutte d'efficacité des GPU existants

Jetons un coup d'œil à la façon dont les entreprises adoptent Proposer des modifications à la conception du réseau et du stockage de l'infrastructure d'IA pour obtenir davantage d'investissements informatiques

Problèmes de données

Optimiser l'utilisation de l'infrastructure informatique existante est une approche importante. Afin de maximiser l'utilisation du GPU, le problème des vitesses de transfert de données lentes doit être résolu pour garantir que le GPU continue de fonctionner sous une charge élevée. Certains utilisateurs constatent une utilisation du GPU de seulement 20 %, ce qui est inacceptable. En conséquence, les équipes d'IA recherchent les meilleurs moyens de maximiser le retour sur leurs investissements en IA

Les GPU sont le moteur de l'IA. Tout comme un moteur de voiture a besoin d’essence pour fonctionner, un GPU a besoin de données pour effectuer des opérations. Si vous limitez le flux de données, vous limiterez les performances du GPU. Si le GPU n'est efficace qu'à 50 %, la productivité de l'équipe IA diminuera, le temps nécessaire pour réaliser un projet doublera et le retour sur investissement sera divisé par deux. Par conséquent, lors de la conception de l'infrastructure, il est important de garantir que le GPU peut fonctionner avec une efficacité maximale et fournir les performances de calcul attendues.

Il est important de noter que les serveurs DGX A100 et H100 disposent tous deux de 30 To de stockage interne. capacité. Cependant, étant donné que la taille moyenne des modèles est d'environ 150 To, cette capacité est insuffisante pour la plupart des modèles d'apprentissage profond. Par conséquent, un stockage de données externe supplémentaire est nécessaire pour fournir des données au GPU

Performances de stockage

Le stockage AI se compose généralement d'un serveur, d'un SSD NVMe et d'un logiciel de stockage, qui sont généralement regroupés dans un simple appareil. Tout comme les GPU sont optimisés pour traiter de grandes quantités de données en parallèle avec des dizaines de milliers de cœurs, le stockage doit également être performant. En intelligence artificielle, l'exigence de base en matière de stockage est de pouvoir stocker l'intégralité de l'ensemble de données et de transférer les données vers le GPU à la vitesse de ligne (c'est-à-dire la vitesse la plus rapide autorisée par le réseau) pour que le GPU continue de fonctionner efficacement et saturé. Rien de moins entraîne un gaspillage de ces ressources GPU très coûteuses et précieuses

Aide à optimiser les ressources GPU et à améliorer l'environnement global en fournissant des données à une vitesse qui peut suivre le rythme d'un cluster de 10 ou 15 serveurs GPU fonctionnant à pleine vitesse performances, tout en utilisant au mieux votre budget pour tirer le meilleur parti de l'ensemble de votre infrastructure

En fait, le défi est que les fournisseurs de stockage qui ne sont pas optimisés pour l'IA ont besoin de nombreux nœuds de calcul clients pour extraire toutes les performances du stockage . Si vous commencez avec un serveur GPU, vous aurez à votre tour besoin de nombreux nœuds de stockage pour atteindre les performances nécessaires à la mise en service d'un seul serveur GPU.

Contenu réécrit : ne faites pas confiance à tous les résultats de référence ; vous pouvez facilement obtenir plus de bande passante lorsque vous utilisez plusieurs serveurs GPU, mais l'IA repose sur le stockage et perdra toutes les performances chaque fois que cela sera nécessaire. Fourni à un seul nœud GPU. Restez fidèle au stockage qui peut offrir les performances ultra-élevées dont vous avez besoin, mais faites-le dans un seul nœud de stockage et soyez en mesure de fournir ces performances à un seul nœud GPU. Cela peut limiter la portée du marché, mais c'est une priorité lorsque vous démarrez votre projet d'IA

Bande passante réseau

La puissance de calcul de plus en plus puissante entraîne une demande croissante pour d’autres infrastructures d’intelligence artificielle. Les besoins en bande passante ont atteint de nouveaux sommets, étant capable de gérer les grandes quantités de données envoyées sur le réseau depuis les périphériques de stockage et traitées par les GPU chaque seconde. Les adaptateurs réseau (NIC) du périphérique de stockage se connectent aux commutateurs du réseau, qui se connectent aux adaptateurs à l'intérieur du serveur GPU. Les cartes réseau peuvent connecter le stockage directement aux cartes réseau sur 1 ou 2 serveurs GPU sans goulots d'étranglement si elles sont configurées correctement, garantissant que la bande passante est suffisamment élevée pour transmettre la charge de données maximale du stockage aux GPU pendant une période de temps prolongée. Le maintien de la saturation est essentiel et, dans de nombreux cas, le si nous ne le faisons pas, c’est la raison pour laquelle nous constatons une utilisation moindre du GPU.

Orchestration GPU

Une fois l'infrastructure en place, les outils d'orchestration et d'allocation GPU aideront grandement les équipes à assembler et allouer les ressources plus efficacement, à comprendre l'utilisation du GPU, à fournir un niveau plus élevé de contrôle des ressources, à réduire les goulots d'étranglement et à améliorer utilisation. Ces outils ne peuvent accomplir toutes ces tâches comme prévu que si l'infrastructure sous-jacente peut assurer le bon flux de données

Dans le domaine de l'intelligence artificielle, les données sont l'entrée clé. Par conséquent, le flash d'entreprise traditionnel n'est pas pertinent pour l'IA lorsqu'il est utilisé pour des applications critiques d'entreprise (par exemple, serveurs de base de données de contrôle des stocks, serveurs de messagerie, serveurs de sauvegarde). Ces solutions sont construites à l'aide d'anciens protocoles, et bien qu'elles aient été réutilisées pour l'IA, ces fondations héritées limitent leurs performances pour les charges de travail GPU et IA, font monter les prix et gaspillent de l'argent sur des fonctionnalités trop coûteuses et inutiles.

Avec le contexte mondial actuel Pénurie de GPU, associée au développement rapide du secteur de l'intelligence artificielle, trouver des moyens de maximiser les performances des GPU n'a jamais été aussi important, surtout à court terme. À mesure que les projets d'apprentissage profond prospèrent, ces méthodes deviennent plusieurs moyens clés de réduire les coûts et d'améliorer le rendement

Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Déclaration de ce site Web
Le contenu de cet article est volontairement contribué par les internautes et les droits d'auteur appartiennent à l'auteur original. Ce site n'assume aucune responsabilité légale correspondante. Si vous trouvez un contenu suspecté de plagiat ou de contrefaçon, veuillez contacter admin@php.cn

Outils d'IA chauds

Undresser.AI Undress

Undresser.AI Undress

Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover

AI Clothes Remover

Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool

Undress AI Tool

Images de déshabillage gratuites

Clothoff.io

Clothoff.io

Dissolvant de vêtements AI

AI Hentai Generator

AI Hentai Generator

Générez AI Hentai gratuitement.

Article chaud

R.E.P.O. Crystals d'énergie expliqués et ce qu'ils font (cristal jaune)
4 Il y a quelques semaines By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Meilleurs paramètres graphiques
4 Il y a quelques semaines By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Comment réparer l'audio si vous n'entendez personne
4 Il y a quelques semaines By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Commandes de chat et comment les utiliser
4 Il y a quelques semaines By 尊渡假赌尊渡假赌尊渡假赌

Outils chauds

Bloc-notes++7.3.1

Bloc-notes++7.3.1

Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise

SublimeText3 version chinoise

Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1

Envoyer Studio 13.0.1

Puissant environnement de développement intégré PHP

Dreamweaver CS6

Dreamweaver CS6

Outils de développement Web visuel

SublimeText3 version Mac

SublimeText3 version Mac

Logiciel d'édition de code au niveau de Dieu (SublimeText3)

Bytedance Cutting lance le super abonnement SVIP : 499 yuans pour un abonnement annuel continu, offrant une variété de fonctions d'IA Bytedance Cutting lance le super abonnement SVIP : 499 yuans pour un abonnement annuel continu, offrant une variété de fonctions d'IA Jun 28, 2024 am 03:51 AM

Ce site a rapporté le 27 juin que Jianying est un logiciel de montage vidéo développé par FaceMeng Technology, une filiale de ByteDance. Il s'appuie sur la plateforme Douyin et produit essentiellement du contenu vidéo court pour les utilisateurs de la plateforme. Il est compatible avec iOS, Android et. Windows, MacOS et autres systèmes d'exploitation. Jianying a officiellement annoncé la mise à niveau de son système d'adhésion et a lancé un nouveau SVIP, qui comprend une variété de technologies noires d'IA, telles que la traduction intelligente, la mise en évidence intelligente, l'emballage intelligent, la synthèse humaine numérique, etc. En termes de prix, les frais mensuels pour le clipping SVIP sont de 79 yuans, les frais annuels sont de 599 yuans (attention sur ce site : équivalent à 49,9 yuans par mois), l'abonnement mensuel continu est de 59 yuans par mois et l'abonnement annuel continu est de 59 yuans par mois. est de 499 yuans par an (équivalent à 41,6 yuans par mois) . En outre, le responsable de Cut a également déclaré que afin d'améliorer l'expérience utilisateur, ceux qui se sont abonnés au VIP d'origine

Assistant de codage d'IA augmenté par le contexte utilisant Rag et Sem-Rag Assistant de codage d'IA augmenté par le contexte utilisant Rag et Sem-Rag Jun 10, 2024 am 11:08 AM

Améliorez la productivité, l’efficacité et la précision des développeurs en intégrant une génération et une mémoire sémantique améliorées par la récupération dans les assistants de codage IA. Traduit de EnhancingAICodingAssistantswithContextUsingRAGandSEM-RAG, auteur JanakiramMSV. Bien que les assistants de programmation d'IA de base soient naturellement utiles, ils ne parviennent souvent pas à fournir les suggestions de code les plus pertinentes et les plus correctes, car ils s'appuient sur une compréhension générale du langage logiciel et des modèles d'écriture de logiciels les plus courants. Le code généré par ces assistants de codage est adapté à la résolution des problèmes qu’ils sont chargés de résoudre, mais n’est souvent pas conforme aux normes, conventions et styles de codage des équipes individuelles. Cela aboutit souvent à des suggestions qui doivent être modifiées ou affinées pour que le code soit accepté dans l'application.

Le réglage fin peut-il vraiment permettre au LLM d'apprendre de nouvelles choses : l'introduction de nouvelles connaissances peut amener le modèle à produire davantage d'hallucinations Le réglage fin peut-il vraiment permettre au LLM d'apprendre de nouvelles choses : l'introduction de nouvelles connaissances peut amener le modèle à produire davantage d'hallucinations Jun 11, 2024 pm 03:57 PM

Les grands modèles linguistiques (LLM) sont formés sur d'énormes bases de données textuelles, où ils acquièrent de grandes quantités de connaissances du monde réel. Ces connaissances sont intégrées à leurs paramètres et peuvent ensuite être utilisées en cas de besoin. La connaissance de ces modèles est « réifiée » en fin de formation. À la fin de la pré-formation, le modèle arrête effectivement d’apprendre. Alignez ou affinez le modèle pour apprendre à exploiter ces connaissances et répondre plus naturellement aux questions des utilisateurs. Mais parfois, la connaissance du modèle ne suffit pas, et bien que le modèle puisse accéder à du contenu externe via RAG, il est considéré comme bénéfique de l'adapter à de nouveaux domaines grâce à un réglage fin. Ce réglage fin est effectué à l'aide de la contribution d'annotateurs humains ou d'autres créations LLM, où le modèle rencontre des connaissances supplémentaires du monde réel et les intègre.

Sept questions d'entretien technique Cool GenAI et LLM Sept questions d'entretien technique Cool GenAI et LLM Jun 07, 2024 am 10:06 AM

Pour en savoir plus sur l'AIGC, veuillez visiter : 51CTOAI.x Community https://www.51cto.com/aigc/Translator|Jingyan Reviewer|Chonglou est différent de la banque de questions traditionnelle que l'on peut voir partout sur Internet. nécessite de sortir des sentiers battus. Les grands modèles linguistiques (LLM) sont de plus en plus importants dans les domaines de la science des données, de l'intelligence artificielle générative (GenAI) et de l'intelligence artificielle. Ces algorithmes complexes améliorent les compétences humaines et stimulent l’efficacité et l’innovation dans de nombreux secteurs, devenant ainsi la clé permettant aux entreprises de rester compétitives. LLM a un large éventail d'applications. Il peut être utilisé dans des domaines tels que le traitement du langage naturel, la génération de texte, la reconnaissance vocale et les systèmes de recommandation. En apprenant de grandes quantités de données, LLM est capable de générer du texte

Afin de fournir un nouveau système de référence et d'évaluation de questions-réponses scientifiques et complexes pour les grands modèles, l'UNSW, Argonne, l'Université de Chicago et d'autres institutions ont lancé conjointement le cadre SciQAG. Afin de fournir un nouveau système de référence et d'évaluation de questions-réponses scientifiques et complexes pour les grands modèles, l'UNSW, Argonne, l'Université de Chicago et d'autres institutions ont lancé conjointement le cadre SciQAG. Jul 25, 2024 am 06:42 AM

L'ensemble de données ScienceAI Question Answering (QA) joue un rôle essentiel dans la promotion de la recherche sur le traitement du langage naturel (NLP). Des ensembles de données d'assurance qualité de haute qualité peuvent non seulement être utilisés pour affiner les modèles, mais également évaluer efficacement les capacités des grands modèles linguistiques (LLM), en particulier la capacité à comprendre et à raisonner sur les connaissances scientifiques. Bien qu’il existe actuellement de nombreux ensembles de données scientifiques d’assurance qualité couvrant la médecine, la chimie, la biologie et d’autres domaines, ces ensembles de données présentent encore certaines lacunes. Premièrement, le formulaire de données est relativement simple, et la plupart sont des questions à choix multiples. Elles sont faciles à évaluer, mais limitent la plage de sélection des réponses du modèle et ne peuvent pas tester pleinement la capacité du modèle à répondre aux questions scientifiques. En revanche, les questions et réponses ouvertes

Cinq écoles d'apprentissage automatique que vous ne connaissez pas Cinq écoles d'apprentissage automatique que vous ne connaissez pas Jun 05, 2024 pm 08:51 PM

L'apprentissage automatique est une branche importante de l'intelligence artificielle qui donne aux ordinateurs la possibilité d'apprendre à partir de données et d'améliorer leurs capacités sans être explicitement programmés. L'apprentissage automatique a un large éventail d'applications dans divers domaines, de la reconnaissance d'images et du traitement du langage naturel aux systèmes de recommandation et à la détection des fraudes, et il change notre façon de vivre. Il existe de nombreuses méthodes et théories différentes dans le domaine de l'apprentissage automatique, parmi lesquelles les cinq méthodes les plus influentes sont appelées les « Cinq écoles d'apprentissage automatique ». Les cinq grandes écoles sont l’école symbolique, l’école connexionniste, l’école évolutionniste, l’école bayésienne et l’école analogique. 1. Le symbolisme, également connu sous le nom de symbolisme, met l'accent sur l'utilisation de symboles pour le raisonnement logique et l'expression des connaissances. Cette école de pensée estime que l'apprentissage est un processus de déduction inversée, à travers les connaissances existantes.

Les performances de SOTA, la méthode d'IA de prédiction d'affinité protéine-ligand multimodale de Xiamen, combinent pour la première fois des informations sur la surface moléculaire Les performances de SOTA, la méthode d'IA de prédiction d'affinité protéine-ligand multimodale de Xiamen, combinent pour la première fois des informations sur la surface moléculaire Jul 17, 2024 pm 06:37 PM

Editeur | KX Dans le domaine de la recherche et du développement de médicaments, il est crucial de prédire avec précision et efficacité l'affinité de liaison des protéines et des ligands pour le criblage et l'optimisation des médicaments. Cependant, les études actuelles ne prennent pas en compte le rôle important des informations sur la surface moléculaire dans les interactions protéine-ligand. Sur cette base, des chercheurs de l'Université de Xiamen ont proposé un nouveau cadre d'extraction de caractéristiques multimodales (MFE), qui combine pour la première fois des informations sur la surface des protéines, la structure et la séquence 3D, et utilise un mécanisme d'attention croisée pour comparer différentes modalités. alignement. Les résultats expérimentaux démontrent que cette méthode atteint des performances de pointe dans la prédiction des affinités de liaison protéine-ligand. De plus, les études d’ablation démontrent l’efficacité et la nécessité des informations sur la surface des protéines et de l’alignement des caractéristiques multimodales dans ce cadre. Les recherches connexes commencent par "S

SK Hynix présentera de nouveaux produits liés à l'IA le 6 août : HBM3E à 12 couches, NAND à 321 hauteurs, etc. SK Hynix présentera de nouveaux produits liés à l'IA le 6 août : HBM3E à 12 couches, NAND à 321 hauteurs, etc. Aug 01, 2024 pm 09:40 PM

Selon les informations de ce site le 1er août, SK Hynix a publié un article de blog aujourd'hui (1er août), annonçant sa participation au Global Semiconductor Memory Summit FMS2024 qui se tiendra à Santa Clara, Californie, États-Unis, du 6 au 8 août, présentant de nombreuses nouvelles technologies de produit. Introduction au Future Memory and Storage Summit (FutureMemoryandStorage), anciennement Flash Memory Summit (FlashMemorySummit) principalement destiné aux fournisseurs de NAND, dans le contexte de l'attention croissante portée à la technologie de l'intelligence artificielle, cette année a été rebaptisée Future Memory and Storage Summit (FutureMemoryandStorage) pour invitez les fournisseurs de DRAM et de stockage et bien d’autres joueurs. Nouveau produit SK hynix lancé l'année dernière

See all articles