


Intégration dynamique : explorer la tendance à combiner l'intelligence artificielle et l'Internet des objets (1)
La convergence de l'intelligence artificielle et de l'Internet des objets apporte une nouvelle dimension d'efficacité, d'automatisation et d'intelligence à notre quotidien. Dans le même temps, l’intelligence artificielle a révolutionné la façon dont les machines apprennent, raisonnent et prennent des décisions. Lorsque les deux sont combinés, l'intelligence artificielle dans l'IoT ouvre un nouveau domaine de possibilités, permettant à des systèmes intelligents et autonomes d'analyser de grandes quantités de données et d'agir en fonction de leurs connaissances. appareils physiques, véhicules, appareils et autres objets intégrés avec des capteurs, des logiciels et des connexions réseau. Ces appareils collectent et échangent des données, créant ainsi un vaste écosystème qui relie les mondes physique et numérique. L'intelligence artificielle, quant à elle, est obtenue en simulant l'intelligence humaine dans des machines programmées pour penser et apprendre comme les humains.
En tirant parti d'algorithmes avancés et de la technologie d'apprentissage automatique, les appareils IoT sont capables d'analyser et d'interpréter les données en temps réel, permettant Prendre des décisions éclairées et agir de manière autonome. Cette combinaison permet aux appareils IoT de s'adapter à des environnements changeants, d'optimiser leurs opérations et d'offrir aux utilisateurs des expériences personnalisées.
Analyse avancée des donnéesLes algorithmes d'intelligence artificielle peuvent traiter et analyser les grandes quantités de données générées par l'Internet des objets. En tirant parti de technologies telles que l’apprentissage automatique et l’apprentissage profond, les appareils IoT peuvent identifier les tendances, les anomalies et les modèles dans les données. Cette analyse fournit des informations précieuses sur l'optimisation des processus, la prévision des besoins de maintenance et la détection des risques ou des pannes potentiels. AUTOMATISATION INTELLIGENTEL'intelligence artificielle permet aux appareils IoT d'automatiser intelligemment les tâches et les processus. En apprenant les données historiques et le comportement des utilisateurs, les appareils IoT peuvent automatiser les opérations quotidiennes, ajuster les paramètres et optimiser la consommation d'énergie. Par exemple, un thermostat intelligent peut connaître les préférences de température d'un occupant et ajuster le chauffage ou la climatisation en conséquence, permettant ainsi des économies d'énergie et un confort personnalisé.Prise de décision en temps réelGrâce à la technologie d'intelligence artificielle, les appareils IoT peuvent prendre des décisions basées sur les données analysées. Les données prennent des décisions en temps réel. Cela permet à l'appareil de réagir rapidement aux conditions ou événements changeants. Par exemple, dans les systèmes de réseaux intelligents, les algorithmes d'IA peuvent analyser les modèles de consommation d'énergie et ajuster la distribution d'énergie pour garantir une utilisation efficace et éviter les pannes de courant 3. Applications pratiques de l'IA dans l'Internet des objetsVoici quelques exemples, démontrant l'intégration de l'IA et de l'IoT stimulant de nombreuses applications pratiques dans tous les secteurs Smart HealthcareLes appareils IoT alimentés par l'IA sont capables de surveiller à distance l'état des patients, de fournir des recommandations de soins de santé personnalisées et de détecter les problèmes de santé dès le début. Les appareils portables équipés de capteurs et d'algorithmes d'IA peuvent surveiller en permanence les signes vitaux, détecter les anomalies et alerter les prestataires de soins de santé en cas d'urgence. Voitures autonomesL'IoT alimenté par l'IA dans les voitures autonomes joue un rôle très important dans le développement. Ces véhicules s'appuient sur des algorithmes d'intelligence artificielle pour interpréter les données des capteurs, prendre des décisions instantanées et naviguer dans des conditions routières complexes. La convergence de l'IA et de l'IoT permet aux voitures autonomes d'optimiser les itinéraires, d'éviter les collisions et d'améliorer la sécurité des passagers
Automatisation industrielle
L'intelligence artificielle dans l'IoT révolutionne les processus industriels en permettant la maintenance prédictive, l'optimisation des chaînes d'approvisionnement et l'amélioration de l'efficacité opérationnelle. Les appareils IoT équipés d'algorithmes d'intelligence artificielle peuvent surveiller les performances des machines, détecter les pannes potentielles et planifier les activités de maintenance avant qu'une panne ne se produise. Cette approche proactive minimise les temps d'arrêt et réduit les coûts de maintenance
4. Avantages de l'intelligence artificielle dans l'IoT
La convergence de l'intelligence artificielle et de l'IoT apporte de nombreux avantages et révolutionne notre relation avec la technologie et notre environnement. La façon dont le monde interagit. Examinons plus en détail les avantages de l'intégration de l'IA dans les systèmes IoT
Analyse des données et prise de décision améliorées
L'un des avantages notables de l'IA dans l'IoT est sa capacité à analyser de grandes quantités de données et à extraire des informations significatives. En utilisant des algorithmes d’intelligence artificielle, les appareils IoT peuvent traiter et interpréter les données en temps réel, permettant ainsi une prise de décision précise et une intelligence exploitable. Voici quelques-uns des principaux avantages :
Analyse prédictive améliorée
Avec les appareils IoT basés sur l'IA, les résultats et les comportements futurs peuvent être prédits sur la base de modèles de données historiques. Grâce à l'apprentissage automatique et à la modélisation prédictive, les systèmes IoT peuvent prédire les besoins de maintenance, optimiser l'allocation des ressources et prédire les préférences des clients. Cette approche proactive permet aux organisations de prendre des décisions éclairées, d'améliorer leur efficacité opérationnelle et d'offrir une meilleure expérience client.
Surveillance et alertes en temps réel
Grâce aux algorithmes d'intelligence artificielle, les appareils IoT sont capables de surveiller les paramètres clés en temps réel et de déclencher des alertes. . Par exemple, dans un système de sécurité pour maison intelligente, les caméras alimentées par l’IA peuvent détecter une activité inhabituelle ou des intrusions et avertir immédiatement le propriétaire ou le personnel de sécurité. Cette surveillance en temps réel améliore la sécurité et permet une réponse rapide aux menaces potentielles
Prise de décision situationnelle
L'application de l'intelligence artificielle dans l'IoT permet aux appareils de prendre des décisions situationnelles basées sur une compréhension approfondie de l'environnement. Par exemple, dans les applications de villes intelligentes, les systèmes de gestion du trafic basés sur l’IA peuvent analyser les données de trafic en temps réel, les conditions météorologiques et les modèles historiques pour optimiser la fluidité du trafic et réduire les embouteillages. Cela augmente l'efficacité du trafic et réduit le temps de trajet des navetteurs
Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Outils d'IA chauds

Undresser.AI Undress
Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover
Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool
Images de déshabillage gratuites

Clothoff.io
Dissolvant de vêtements AI

AI Hentai Generator
Générez AI Hentai gratuitement.

Article chaud

Outils chauds

Bloc-notes++7.3.1
Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise
Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1
Puissant environnement de développement intégré PHP

Dreamweaver CS6
Outils de développement Web visuel

SublimeText3 version Mac
Logiciel d'édition de code au niveau de Dieu (SublimeText3)

Ce site a rapporté le 27 juin que Jianying est un logiciel de montage vidéo développé par FaceMeng Technology, une filiale de ByteDance. Il s'appuie sur la plateforme Douyin et produit essentiellement du contenu vidéo court pour les utilisateurs de la plateforme. Il est compatible avec iOS, Android et. Windows, MacOS et autres systèmes d'exploitation. Jianying a officiellement annoncé la mise à niveau de son système d'adhésion et a lancé un nouveau SVIP, qui comprend une variété de technologies noires d'IA, telles que la traduction intelligente, la mise en évidence intelligente, l'emballage intelligent, la synthèse humaine numérique, etc. En termes de prix, les frais mensuels pour le clipping SVIP sont de 79 yuans, les frais annuels sont de 599 yuans (attention sur ce site : équivalent à 49,9 yuans par mois), l'abonnement mensuel continu est de 59 yuans par mois et l'abonnement annuel continu est de 59 yuans par mois. est de 499 yuans par an (équivalent à 41,6 yuans par mois) . En outre, le responsable de Cut a également déclaré que afin d'améliorer l'expérience utilisateur, ceux qui se sont abonnés au VIP d'origine

Améliorez la productivité, l’efficacité et la précision des développeurs en intégrant une génération et une mémoire sémantique améliorées par la récupération dans les assistants de codage IA. Traduit de EnhancingAICodingAssistantswithContextUsingRAGandSEM-RAG, auteur JanakiramMSV. Bien que les assistants de programmation d'IA de base soient naturellement utiles, ils ne parviennent souvent pas à fournir les suggestions de code les plus pertinentes et les plus correctes, car ils s'appuient sur une compréhension générale du langage logiciel et des modèles d'écriture de logiciels les plus courants. Le code généré par ces assistants de codage est adapté à la résolution des problèmes qu’ils sont chargés de résoudre, mais n’est souvent pas conforme aux normes, conventions et styles de codage des équipes individuelles. Cela aboutit souvent à des suggestions qui doivent être modifiées ou affinées pour que le code soit accepté dans l'application.

Les grands modèles linguistiques (LLM) sont formés sur d'énormes bases de données textuelles, où ils acquièrent de grandes quantités de connaissances du monde réel. Ces connaissances sont intégrées à leurs paramètres et peuvent ensuite être utilisées en cas de besoin. La connaissance de ces modèles est « réifiée » en fin de formation. À la fin de la pré-formation, le modèle arrête effectivement d’apprendre. Alignez ou affinez le modèle pour apprendre à exploiter ces connaissances et répondre plus naturellement aux questions des utilisateurs. Mais parfois, la connaissance du modèle ne suffit pas, et bien que le modèle puisse accéder à du contenu externe via RAG, il est considéré comme bénéfique de l'adapter à de nouveaux domaines grâce à un réglage fin. Ce réglage fin est effectué à l'aide de la contribution d'annotateurs humains ou d'autres créations LLM, où le modèle rencontre des connaissances supplémentaires du monde réel et les intègre.

Pour en savoir plus sur l'AIGC, veuillez visiter : 51CTOAI.x Community https://www.51cto.com/aigc/Translator|Jingyan Reviewer|Chonglou est différent de la banque de questions traditionnelle que l'on peut voir partout sur Internet. nécessite de sortir des sentiers battus. Les grands modèles linguistiques (LLM) sont de plus en plus importants dans les domaines de la science des données, de l'intelligence artificielle générative (GenAI) et de l'intelligence artificielle. Ces algorithmes complexes améliorent les compétences humaines et stimulent l’efficacité et l’innovation dans de nombreux secteurs, devenant ainsi la clé permettant aux entreprises de rester compétitives. LLM a un large éventail d'applications. Il peut être utilisé dans des domaines tels que le traitement du langage naturel, la génération de texte, la reconnaissance vocale et les systèmes de recommandation. En apprenant de grandes quantités de données, LLM est capable de générer du texte

L'ensemble de données ScienceAI Question Answering (QA) joue un rôle essentiel dans la promotion de la recherche sur le traitement du langage naturel (NLP). Des ensembles de données d'assurance qualité de haute qualité peuvent non seulement être utilisés pour affiner les modèles, mais également évaluer efficacement les capacités des grands modèles linguistiques (LLM), en particulier la capacité à comprendre et à raisonner sur les connaissances scientifiques. Bien qu’il existe actuellement de nombreux ensembles de données scientifiques d’assurance qualité couvrant la médecine, la chimie, la biologie et d’autres domaines, ces ensembles de données présentent encore certaines lacunes. Premièrement, le formulaire de données est relativement simple, et la plupart sont des questions à choix multiples. Elles sont faciles à évaluer, mais limitent la plage de sélection des réponses du modèle et ne peuvent pas tester pleinement la capacité du modèle à répondre aux questions scientifiques. En revanche, les questions et réponses ouvertes

L'apprentissage automatique est une branche importante de l'intelligence artificielle qui donne aux ordinateurs la possibilité d'apprendre à partir de données et d'améliorer leurs capacités sans être explicitement programmés. L'apprentissage automatique a un large éventail d'applications dans divers domaines, de la reconnaissance d'images et du traitement du langage naturel aux systèmes de recommandation et à la détection des fraudes, et il change notre façon de vivre. Il existe de nombreuses méthodes et théories différentes dans le domaine de l'apprentissage automatique, parmi lesquelles les cinq méthodes les plus influentes sont appelées les « Cinq écoles d'apprentissage automatique ». Les cinq grandes écoles sont l’école symbolique, l’école connexionniste, l’école évolutionniste, l’école bayésienne et l’école analogique. 1. Le symbolisme, également connu sous le nom de symbolisme, met l'accent sur l'utilisation de symboles pour le raisonnement logique et l'expression des connaissances. Cette école de pensée estime que l'apprentissage est un processus de déduction inversée, à travers les connaissances existantes.

Editeur | KX Dans le domaine de la recherche et du développement de médicaments, il est crucial de prédire avec précision et efficacité l'affinité de liaison des protéines et des ligands pour le criblage et l'optimisation des médicaments. Cependant, les études actuelles ne prennent pas en compte le rôle important des informations sur la surface moléculaire dans les interactions protéine-ligand. Sur cette base, des chercheurs de l'Université de Xiamen ont proposé un nouveau cadre d'extraction de caractéristiques multimodales (MFE), qui combine pour la première fois des informations sur la surface des protéines, la structure et la séquence 3D, et utilise un mécanisme d'attention croisée pour comparer différentes modalités. alignement. Les résultats expérimentaux démontrent que cette méthode atteint des performances de pointe dans la prédiction des affinités de liaison protéine-ligand. De plus, les études d’ablation démontrent l’efficacité et la nécessité des informations sur la surface des protéines et de l’alignement des caractéristiques multimodales dans ce cadre. Les recherches connexes commencent par "S

Selon les informations de ce site le 1er août, SK Hynix a publié un article de blog aujourd'hui (1er août), annonçant sa participation au Global Semiconductor Memory Summit FMS2024 qui se tiendra à Santa Clara, Californie, États-Unis, du 6 au 8 août, présentant de nombreuses nouvelles technologies de produit. Introduction au Future Memory and Storage Summit (FutureMemoryandStorage), anciennement Flash Memory Summit (FlashMemorySummit) principalement destiné aux fournisseurs de NAND, dans le contexte de l'attention croissante portée à la technologie de l'intelligence artificielle, cette année a été rebaptisée Future Memory and Storage Summit (FutureMemoryandStorage) pour invitez les fournisseurs de DRAM et de stockage et bien d’autres joueurs. Nouveau produit SK hynix lancé l'année dernière
