Vérifiez s'il existe une séquence valide divisible par M
Une séquence est une collection d'objets, dans notre cas c'est une collection d'entiers. La tâche consiste à déterminer si une séquence d'éléments utilisant des opérateurs d'addition et de soustraction est divisible par M.
Énoncé du problème
Étant donné un entier M et un tableau d'entiers. Vérifie s'il existe une séquence valide dont la solution est divisible par M en utilisant uniquement l'addition et la soustraction entre les éléments.
Exemple 1
Input: M = 2, arr = {1, 2, 5}
Output: TRUE
Explication - Pour le tableau donné, il peut y avoir une séquence valide {1 + 2 + 5} = {8}, qui est divisible par 2.
Exemple 2
Input: M = 4, arr = {1, 2}
Output: FALSE
Explication - Pour le tableau donné, il est impossible d'avoir une séquence dont la solution est divisible par 4.
Méthode 1 : Méthode brutale
Un moyen simple de résoudre ce problème consiste à utiliser une fonction récursive pour trouver toutes les séquences possibles du tableau, puis à vérifier si une séquence est divisible par M.
pseudocode
procedure divisible (M, arr[], index, sum, n) if index == n if sum is a multiple of M ans = TRUE end if ans = false end if divisible(M, arr, index + 1, sum + arr[index], n) or divisible(M, arr, index + 1, sum - arr[index], n) end procedure
Exemple : implémentation C++
Dans le programme suivant, nous utilisons la méthode récursive pour trouver toutes les séquences valides, puis vérifions si une séquence valide est divisible par M.
#include <bits/stdc++.h> using namespace std; // Recusive function to find if a valid sequence is divisible by M or not bool divisible(int M, int arr[], int index, int sum, int n){ // Cheking the divisiblilty by M when the array ends if (index == n) { if (sum % M == 0){ return true; } return false; } // If either of addition or subtraction is true, return true return divisible(M, arr, index + 1, sum + arr[index], n) || divisible(M, arr, index + 1, sum - arr[index], n); } int main(){ int M = 4, arr[2] = {1, 5}; if (divisible(M, arr, 0, 0, 2)){ cout << "TRUE"; } else{ cout << " FALSE"; } return 0; }
Sortie
TRUE
Complexité temporelle - O(2^n) en raison de l'utilisation de la récursivité.
Complexité spatiale - O(n) en raison de l'espace de la pile de récursion.
Méthode 2 : Retour en arrière
Cette méthode est similaire à la méthode récursive précédente par force brute, sauf qu'en utilisant le retour en arrière, nous pouvons revenir en arrière dans l'espace de recherche pour éviter de suivre un chemin dont nous savons qu'il n'a pas de séquence valide divisible par M.
pseudocode
procedure divisible (M, arr[], index, sum, n) if index == n if sum is a multiple of M ans = TRUE end if ans = false end if if divisible(M, arr, index + 1, sum + arr[index], n) ans = true end if if divisible(M, arr, index + 1, sum - arr[index], n) ans = true end if ans = false end procedure
Exemple : implémentation C++
Dans le programme ci-dessous, nous utilisons le backtracking pour élaguer l'espace de recherche afin de trouver la solution au problème.
#include <bits/stdc++.h> using namespace std; // Function to find if a valid sequence is divisible by M or not bool divisible(int M, int arr[], int index, int sum, int n){ // Cheking the divisiblilty by M when the array ends if (index == n){ if (sum % M == 0){ return true; } return false; } // Checking the divisibility of sum + arr[index] if (divisible(M, arr, index + 1, sum + arr[index], n)){ return true; } // Checking the divisibility of sum - arr[index] if (divisible(M, arr, index + 1, sum - arr[index], n)){ return true; } return false; } int main(){ int M = 4, arr[2] = {1, 5}; if (divisible(M, arr, 0, 0, 2)){ cout << "TRUE"; } else{ cout << " FALSE"; } return 0; }
Sortie
TRUE
Complexité temporelle - La complexité temporelle dans le pire des cas est O(2^n), mais elle est en fait meilleure que la méthode par force brute en raison de l'élagage de l'espace de recherche.
Complexité spatiale - O(n) en raison de l'espace de pile récursif.
Méthode 3 : Méthode gourmande
La solution gourmande à ce problème consiste à trier d'abord le tableau par ordre croissant, puis à appliquer goulûment la fonction d'addition si la somme ne dépasse pas M. Cette méthode ne donnera peut-être pas une solution globalement optimale, mais elle donnera une solution optimale locale.
pseudocode
procedure divisible (M, arr[]) sum = 0 for i = 1 to end of arr sum = sum + arr[i] if sum is divisible by M ans = true end if sort array arr[] i = 0 j = last index of array while i < j if arr[j] - arr[i] is divisible by M ans = true end if if sum % M == (sum - arr[j]) % M sum = sum - arr[j] j = j - 1 else sum = sum - arr[i] i = i + 1 end if ans = false end procedure
Exemple : implémentation C++
Dans le programme suivant, un tableau est trié pour trouver le meilleur sous-tableau local divisible par M.
#include <bits/stdc++.h> using namespace std; // Greedy function to find if a valid sequence is divisible by M or not bool divisible(int M, vector<int> &arr){ int sum = 0; for (int i = 0; i < arr.size(); i++) { sum += arr[i]; } // Checking if sumof all elements is divisible by M if (sum % M == 0){ return true; } sort(arr.begin(), arr.end()); int i = 0, j = arr.size() - 1; while (i < j){ // Checking if the difference between the largest and smallest element at a time in the array is divisible by M if ((arr[j] - arr[i]) % M == 0){ return true; } // Removing either the largest or smallest element based on which does not affect the sum's divisibility if (sum % M == (sum - arr[i]) % M){ sum -= arr[i]; i++; } else{ sum -= arr[j]; j--; } } return false; } int main(){ int M = 4; int array[2] = {1, 3}; vector<int> arr(array, array + 2); if (divisible(M, arr)){ cout << "TRUE"; } else{ cout << " FALSE"; } return 0; }
Sortie
TRUE
Méthode 4 : Programmation dynamique
En utilisant le concept de programmation dynamique, dans cette solution nous stockons les résultats intermédiaires de l'évaluation. Nous allons créer un tableau avec N+1 lignes et M colonnes, et lorsque nous n'utilisons pas d'éléments de tableau, le cas de base donne % M == 0. Puis en itérant sur tous les restes possibles modulo M, nous mettons à jour le tableau.
pseudocode
procedure divisible (arr[], M , N) dp[N+1][M] = false dp[0][0] = true for i = 1 to N for i = j to M mod = arr[ i- 1] % M dp[i][j] = dp[i - 1][(j - mod + M) % M] or dp[i - 1][(j + mod) % M] ans = dp[N][0] end procedure
Exemple : implémentation C++
Dans le programme ci-dessous, nous divisons le problème en sous-problèmes puis les résolvons.
#include <bits/stdc++.h> using namespace std; // Function to find if a valid sequence is divisible by M or not bool divisible(int arr[], int M, int N){ // Creating the dp table of size N+1 * M vector<vector<bool> > dp(N + 1, vector<bool>(M, false)); // Base case dp[0][0] = true; // For each element iterating over all possible remainders j modulo M for (int i = 1; i <= N; i++){ for (int j = 0; j < M; j++){ int mod = arr[i - 1] % M; // Either exclude or include the current element in the table dp[i][j] = dp[i - 1][(j - mod + M) % M] || dp[i - 1][(j + mod) % M]; } } return dp[N][0]; } int main(){ int M = 4; int arr[2] = {1, 3}; if (divisible(arr, M, 2)){ cout << "TRUE"; } else{ cout << " FALSE"; } return 0; }
Sortie
TRUE
Conclusion
Pour résumer, afin de trouver des séquences valides divisibles par M, nous pouvons appliquer plusieurs méthodes et différentes analyses relationnelles et spatiales, allant de O(2^n) dans le cas de la force brute à O(NM) dans le cas de la programmation dynamique. est la méthode la plus efficace.
Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Outils d'IA chauds

Undresser.AI Undress
Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover
Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool
Images de déshabillage gratuites

Clothoff.io
Dissolvant de vêtements AI

AI Hentai Generator
Générez AI Hentai gratuitement.

Article chaud

Outils chauds

Bloc-notes++7.3.1
Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise
Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1
Puissant environnement de développement intégré PHP

Dreamweaver CS6
Outils de développement Web visuel

SublimeText3 version Mac
Logiciel d'édition de code au niveau de Dieu (SublimeText3)

Sujets chauds



Cet article explique la bibliothèque de modèles standard C (STL), en se concentrant sur ses composants principaux: conteneurs, itérateurs, algorithmes et fonctors. Il détaille comment ces interagissent pour permettre la programmation générique, l'amélioration de l'efficacité du code et de la lisibilité

Cet article détaille l'utilisation efficace de l'algorithme STL en c. Il met l'accent sur le choix de la structure des données (vecteurs vs listes), l'analyse de la complexité des algorithmes (par exemple, STD :: Srieur vs std :: partial_sort), l'utilisation des itérateurs et l'exécution parallèle. Pièges communs comme

Cet article détaille la gestion efficace des exceptions en C, couvrant les mécanismes d'essai, de capture et de lancement. Il met l'accent sur les meilleures pratiques comme RAII, en évitant les blocs de capture inutiles et en enregistrant des exceptions pour un code robuste. L'article aborde également Perf

L'article discute de l'utilisation de Move Semantics en C pour améliorer les performances en évitant la copie inutile. Il couvre la mise en œuvre de constructeurs de déplace

Les plages de c 20 améliorent la manipulation des données avec l'expressivité, la composibilité et l'efficacité. Ils simplifient les transformations complexes et s'intègrent dans les bases de code existantes pour de meilleures performances et maintenabilité.

L'article traite de Dynamic Dispatch in C, ses coûts de performance et les stratégies d'optimisation. Il met en évidence les scénarios où la répartition dynamique a un impact

L'article discute de l'utilisation efficace des références de référence en C pour la sémantique de déplacement, le transfert parfait et la gestion des ressources, mettant en évidence les meilleures pratiques et les améliorations des performances. (159 caractères)

C La gestion de la mémoire utilise des pointeurs nouveaux, supprimés et intelligents. L'article traite du manuel par rapport à la gestion automatisée et de la façon dont les pointeurs intelligents empêchent les fuites de mémoire.
