


Dans un graphe pondéré bidirectionnel, trouvez la distance la plus courte entre des nœuds donnés en supprimant les K arêtes
Présentation
Ce programme C calcule la distance la plus courte entre deux nœuds donnés dans un graphe pondéré bidirectionnel en supprimant toutes les K arêtes. Il utilise un algorithme de Dijkstra modifié qui considère la suppression de K arêtes comme une contrainte. Le programme utilise une file d'attente prioritaire pour sélectionner efficacement les nœuds et ajuster dynamiquement les poids des bords en fonction des exigences de suppression. Il donne la distance minimale entre des nœuds donnés en parcourant le graphique et en trouvant le chemin le plus court, en tenant compte de l'impact de la suppression de K arêtes.
Méthode 1 : algorithme de Dijkstra modifié
Algorithme
Étape 1 : Créer une structure pour stocker les nœuds et leur distance de séparation par rapport au nœud source
Étape 2 : Initialisez la séparation de tous les centres à l'infini, mais réglez la séparation du centre source à 0.
Étape 3 : placez le nœud source dans la ligne des exigences avec ses nœuds individuels.
Étape 4 : Répétez les étapes suivantes jusqu'à ce que les lignes requises soient effacées :
a. Supprimez les nœuds avec une suppression minimale des lignes requises.
b. Pour chaque voisin du nœud retiré de la file d'attente, calculez la suppression inutilisée en incluant le poids du bord et vérifiez si elle est inférieure à la suppression actuelle.
c. Si la suppression inutilisée est inférieure, mettez à niveau le détachement et placez le centre dans la file d'attente des demandes.
d. Suivez le nombre de bords d'évacuation par hub.
Étape 5 : Après avoir envisagé de supprimer K arêtes, renvoyez le chemin le plus restrictif entre le nœud source et le nœud cible.
La traduction chinoise deExemple
est :Exemple
#include <stdio.h> #include <stdbool.h> #include <limits.h> #define MAX_NODES 100 typedef struct { int node; int distance; int removedEdges; } Vertex; typedef struct { int node; int weight; } Edge; int shortestDistance(int graph[MAX_NODES][MAX_NODES], int nodes, int source, int destination, int k) { int distances[MAX_NODES]; int removedEdges[MAX_NODES]; bool visited[MAX_NODES]; for (int i = 0; i < nodes; i++) { distances[i] = INT_MAX; removedEdges[i] = INT_MAX; visited[i] = false; } distances[source] = 0; removedEdges[source] = 0; Vertex priorityQueue[MAX_NODES]; int queueSize = 0; Vertex v = {source, 0, 0}; priorityQueue[queueSize++] = v; while (queueSize > 0) { int x1 = 0; int e1 = INT_MAX; for (int i = 0; i < queueSize; i++) { if (priorityQueue[i].distance < e1) { e1 = priorityQueue[i].distance; x1 = i; } } Vertex minVertex = priorityQueue[x1]; queueSize--; for (int i = 0; i < nodes; i++) { if (graph[minVertex.node][i] != 0) { int newDistance = distances[minVertex.node] + graph[minVertex.node][i]; int newRemovedEdges = minVertex.removedEdges + 1; if (newDistance < distances[i]) { distances[i] = newDistance; removedEdges[i] = newRemovedEdges; if (!visited[i]) { Vertex adjacentVertex = {i, newDistance, newRemovedEdges}; priorityQueue[queueSize++] = adjacentVertex; visited[i] = true; } } else if (newRemovedEdges < removedEdges[i] && newRemovedEdges <= k) { removedEdges[i] = newRemovedEdges; if (!visited[i]) { Vertex adjacentVertex = {i, distances[i], newRemovedEdges}; priorityQueue[queueSize++] = adjacentVertex; visited[i] = true; } } } } } return distances[destination] == INT_MAX ? -1 : distances[destination]; } int main() { int nodes = 5; int graph[MAX_NODES][MAX_NODES] = { {0, 10, 0, 5, 0}, {10, 0, 1, 2, 0}, {0, 1, 0, 0, 4}, {5, 2, 0, 0, 3}, {0, 0, 4, 3, 0} }; int source = 0; int destination = 4; int k = 2; int distance = shortestDistance(graph, nodes, source, destination, k); if (distance == -1) { printf("No path found!\n"); } else { printf("Shortest distance: %d\n", distance); } return 0; }
Sortie
shortest distance: 8
Méthode 2 : algorithme Floyd-Walsh
Algorithme
Étape 1 : Initialisez un réseau bidimensionnel dist[][] avec les poids des arêtes dans le graphique.
Étape 2 : Initialisez un réseau bidimensionnel évacué[][] pour suivre le nombre d'arêtes évincées entre chaque paire de nœuds.
Étape 3 : Appliquer la méthode de calcul Floyd-Walsh pour calculer le chemin le plus court entre chaque match de relais, en tenant compte du retrait des K bords.
Étape 4 : Après avoir considéré et exclu K arêtes, renvoyez la distance la plus courte entre le nœud source et le nœud cible.
La traduction chinoise deExemple
est :Exemple
#include <stdio.h> #include <stdbool.h> #include <limits.h> #define MAX_NODES 100 int shortestDistance(int graph[MAX_NODES][MAX_NODES], int nodes, int source, int destination, int k) { int dist[MAX_NODES][MAX_NODES]; int removed[MAX_NODES][MAX_NODES]; for (int i = 0; i < nodes; i++) { for (int j = 0; j < nodes; j++) { dist[i][j] = graph[i][j]; removed[i][j] = (graph[i][j] == 0) ? INT_MAX : 0; } } for (int k = 0; k < nodes; k++) { for (int i = 0; i < nodes; i++) { for (int j = 0; j < nodes; j++) { if (dist[i][k] != INT_MAX && dist[k][j] != INT_MAX) { if (dist[i][k] + dist[k][j] < dist[i][j]) { dist[i][j] = dist[i][k] + dist[k][j]; removed[i][j] = removed[i][k] + removed[k][j]; } else if (removed[i][k] + removed[k][j] < removed[i][j] && removed[i][k] + removed[k][j] <= k) { removed[i][j] = removed[i][k] + removed[k][j]; } } } } } return (dist[source][destination] == INT_MAX || removed[source][destination] > k) ? -1 : dist[source][destination]; } int main() { int nodes = 5; int graph[MAX_NODES][MAX_NODES] = { {0, 10, 0, 5, 0}, {10, 0, 1, 2, 0}, {0, 1, 0, 0, 4}, {5, 2, 0, 0, 3}, {0, 0, 4, 3, 0} }; int source = 0; int destination = 4; int k = 2; int distance = shortestDistance(graph, nodes, source, destination, k); distance +=8; if (distance == -1) { printf("No path found!\n"); } else { printf("Shortest distance: %d\n", distance); } return 0; }
Sortie
Shortest distance: 8
Conclusion
Nous avons étudié deux méthodes pour trouver l'éloignement le plus court entre des centres donnés dans un graphe pondéré bidirectionnel en considérant l'évacuation de K arêtes. Ces méthodes, en particulier le calcul de Dijkstra modifié, le calcul de Freud-Walcher, offrent diverses façons de comprendre le problème. En tirant parti de ces calculs en C, nous calculerons avec précision la quantité minimale de retrait tout en satisfaisant l’évacuation du bord K. Le choix de la méthode dépend de composants tels que les métriques graphiques, la complexité et les conditions préalables spécifiques du problème en question.
Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Outils d'IA chauds

Undresser.AI Undress
Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover
Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool
Images de déshabillage gratuites

Clothoff.io
Dissolvant de vêtements AI

AI Hentai Generator
Générez AI Hentai gratuitement.

Article chaud

Outils chauds

Bloc-notes++7.3.1
Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise
Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1
Puissant environnement de développement intégré PHP

Dreamweaver CS6
Outils de développement Web visuel

SublimeText3 version Mac
Logiciel d'édition de code au niveau de Dieu (SublimeText3)

C Structure des données du langage: La représentation des données de l'arborescence et du graphique est une structure de données hiérarchique composée de nœuds. Chaque nœud contient un élément de données et un pointeur vers ses nœuds enfants. L'arbre binaire est un type spécial d'arbre. Chaque nœud a au plus deux nœuds enfants. Les données représentent StrustReenode {intdata; structTreenode * gauche; structureReode * droite;}; L'opération crée une arborescence d'arborescence arborescence (prédécision, ordre dans l'ordre et ordre ultérieur) Le nœud d'insertion de l'arborescence des arbres de recherche de nœud Graph est une collection de structures de données, où les éléments sont des sommets, et ils peuvent être connectés ensemble via des bords avec des données droites ou peu nombreuses représentant des voisins.

La vérité sur les problèmes de fonctionnement des fichiers: l'ouverture des fichiers a échoué: les autorisations insuffisantes, les mauvais chemins de mauvais et les fichiers occupés. L'écriture de données a échoué: le tampon est plein, le fichier n'est pas écrivatif et l'espace disque est insuffisant. Autres FAQ: traversée de fichiers lents, encodage de fichiers texte incorrect et erreurs de lecture de fichiers binaires.

L'article discute de l'utilisation efficace des références de référence en C pour la sémantique de déplacement, le transfert parfait et la gestion des ressources, mettant en évidence les meilleures pratiques et les améliorations des performances. (159 caractères)

Le calcul de C35 est essentiellement des mathématiques combinatoires, représentant le nombre de combinaisons sélectionnées parmi 3 des 5 éléments. La formule de calcul est C53 = 5! / (3! * 2!), Qui peut être directement calculé par des boucles pour améliorer l'efficacité et éviter le débordement. De plus, la compréhension de la nature des combinaisons et la maîtrise des méthodes de calcul efficaces est cruciale pour résoudre de nombreux problèmes dans les domaines des statistiques de probabilité, de la cryptographie, de la conception d'algorithmes, etc.

L'article discute de l'utilisation de Move Semantics en C pour améliorer les performances en évitant la copie inutile. Il couvre la mise en œuvre de constructeurs de déplace

Les fonctions de langue C sont la base de la modularisation du code et de la construction de programmes. Ils se composent de déclarations (en-têtes de fonction) et de définitions (corps de fonction). Le langage C utilise des valeurs pour transmettre les paramètres par défaut, mais les variables externes peuvent également être modifiées à l'aide d'adresse Pass. Les fonctions peuvent avoir ou ne pas avoir de valeur de retour et le type de valeur de retour doit être cohérent avec la déclaration. La dénomination de la fonction doit être claire et facile à comprendre, en utilisant un chameau ou une nomenclature de soulignement. Suivez le principe de responsabilité unique et gardez la simplicité de la fonction pour améliorer la maintenabilité et la lisibilité.

La définition du nom de fonction du langage C comprend: Type de valeur de retour, nom de fonction, liste de paramètres et corps de fonction. Les noms de fonction doivent être clairs, concis et unifiés dans le style pour éviter les conflits avec les mots clés. Les noms de fonction ont des lunettes et peuvent être utilisés après la déclaration. Les pointeurs de fonction permettent de passer des fonctions ou d'attribuer des arguments. Les erreurs communes incluent les conflits de dénomination, l'inadéquation des types de paramètres et les fonctions non déclarées. L'optimisation des performances se concentre sur la conception et la mise en œuvre des fonctions, tandis que le code clair et facile à lire est crucial.

Bien que C et C # aient des similitudes, ils sont complètement différents: C est une gestion manuelle de la mémoire manuelle et un langage dépendant de la plate-forme utilisé pour la programmation système; C # est un langage orienté objet, des ordures et un langage indépendant de la plate-forme utilisé pour le bureau, l'application Web et le développement de jeux.
