


Algorithme pour trouver la paire de somme maximale dans une matrice écrite en C++
Dans cet article, nous discuterons de la recherche de la paire avec une somme maximale dans une matrice ou un tableau 2D donné. Par exemple
Input : matrix[m][n] = { { 3, 5, 2 }, { 2, 6, 47 }, { 1, 64, 66 } } Output : 130 Explanation : maximum sum is 130 from element pair 64 and 66. Input : matrix[m][n] = { { 55, 22, 46 }, { 6, 2, 1 }, { 3, 24, 52 } } Output : 107 Explanation : maximum sum is 130 from element pair 55 and 52.
Façons de trouver une solution
Expliquons brièvement les différents processus pour résoudre un problème donné sans aucun problème.
Méthode de force brute
< p>Vous pouvez appliquer une méthode de force brute, c'est-à-dire initialiser la variable MAX avec la somme des deux premiers éléments, puis parcourir le tableau et vérifier la somme de contrôle de chaque paire d'éléments (si elle est plus significative que MAX) et MAX est la nouvelle valeur de la somme. Mais ce processus prendra plus de temps et la complexité temporelle est O((m*n)2).Méthode efficace
Une méthode efficace peut être adoptée, c'est-à-dire initialiser deux variables MAX1 et MAX2 à 0, puis parcourir le tableau bidimensionnel ; vérifier si l'élément actuel est plus important que MAX1. Si tel est le cas, remplacez MAX2 par MAX1 et MAX1 par la pièce existante. De cette façon, nous pouvons trouver les deux plus grands nombres. Évidemment, la somme des deux entiers est la plus grande.
Exemple
#include <bits/stdc++.h> using namespace std; int main() { int m = 3, n = 3; // initialising matrix with values int matrix[m][n] = { { 55, 22, 46 }, { 6, 2, 1 }, { 3, 24, 52 } }; // initialising MAX1 and MAX2 to keep two maximum numbers. int MAX1 = INT_MIN; int MAX2 = INT_MIN; int result; for (int i = 0; i < m; i++) { for (int j = 0; j < n; j++) { // check if the element is greater than MAX1. if (matrix[i][j] > MAX1) { MAX2 = MAX1; MAX1 = matrix[i][j]; } // check if the current element is between MAX1 and MAX2. else if (matrix[i][j] > MAX2 && matrix[i][j] <= MAX1) { MAX2 = matrix[i][j]; } } } // calculating maximum sum by adding both maximum numbers. result = MAX1 + MAX2; cout << "maximum sum in Matrix : " << result ; return 0; }
Output
maximum sum in Matrix : 107
La description du code ci-dessus
- stocke les éléments dans un tableau bidimensionnel et initialise MAX1 et MAX2 avec la valeur minimale INT.
- Parcourez la matrice.
- Si la partie actuelle est plus importante que MAX1, remplacez MAX2 par MAX1 et MAX1 par l'élément actuel.
- Si la partie actuelle est plus simple que MAX1 et plus significative que MAX2, remplacez MAX2 par l'élément actuel.
- Calculez le résultat en additionnant les deux MAX1 et MAX2 et imprimez le résultat.
Conclusion
Dans cet article, nous avons discuté de la recherche de la paire avec une somme maximale dans une matrice donnée. Nous avons discuté des moyens de trouver des solutions et avons également discuté du même code C++. Nous pouvons écrire ce code dans n'importe quel autre langage comme Java, C, Python, etc. Nous espérons que cet article vous a été utile.
Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Outils d'IA chauds

Undresser.AI Undress
Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover
Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool
Images de déshabillage gratuites

Clothoff.io
Dissolvant de vêtements AI

AI Hentai Generator
Générez AI Hentai gratuitement.

Article chaud

Outils chauds

Bloc-notes++7.3.1
Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise
Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1
Puissant environnement de développement intégré PHP

Dreamweaver CS6
Outils de développement Web visuel

SublimeText3 version Mac
Logiciel d'édition de code au niveau de Dieu (SublimeText3)

Écrit ci-dessus et compréhension personnelle de l'auteur : À l'heure actuelle, dans l'ensemble du système de conduite autonome, le module de perception joue un rôle essentiel. Le véhicule autonome roulant sur la route ne peut obtenir des résultats de perception précis que via le module de perception en aval. dans le système de conduite autonome, prend des jugements et des décisions comportementales opportuns et corrects. Actuellement, les voitures dotées de fonctions de conduite autonome sont généralement équipées d'une variété de capteurs d'informations de données, notamment des capteurs de caméra à vision panoramique, des capteurs lidar et des capteurs radar à ondes millimétriques pour collecter des informations selon différentes modalités afin d'accomplir des tâches de perception précises. L'algorithme de perception BEV basé sur la vision pure est privilégié par l'industrie en raison de son faible coût matériel et de sa facilité de déploiement, et ses résultats peuvent être facilement appliqués à diverses tâches en aval.

Les défis courants rencontrés par les algorithmes d'apprentissage automatique en C++ incluent la gestion de la mémoire, le multithread, l'optimisation des performances et la maintenabilité. Les solutions incluent l'utilisation de pointeurs intelligents, de bibliothèques de threads modernes, d'instructions SIMD et de bibliothèques tierces, ainsi que le respect des directives de style de codage et l'utilisation d'outils d'automatisation. Des cas pratiques montrent comment utiliser la bibliothèque Eigen pour implémenter des algorithmes de régression linéaire, gérer efficacement la mémoire et utiliser des opérations matricielles hautes performances.

Dans le premier article de cette série, nous avons discuté des liens et des différences entre l’intelligence artificielle, l’apprentissage automatique, l’apprentissage profond, la science des données, etc. Nous avons également fait des choix difficiles concernant les langages de programmation, les outils et bien plus encore que toute la série utiliserait. Enfin, nous avons également introduit un peu de connaissances matricielles. Dans cet article, nous aborderons en profondeur la matrice, le cœur de l’intelligence artificielle. Mais avant cela, comprenons d’abord l’histoire de l’intelligence artificielle. Pourquoi avons-nous besoin de comprendre l’histoire de l’intelligence artificielle ? Il y a eu de nombreux booms de l’IA au cours de l’histoire, mais dans de nombreux cas, les énormes attentes quant au potentiel de l’IA ne se sont pas concrétisées. Comprendre l’histoire de l’intelligence artificielle peut nous aider à voir si cette vague d’intelligence artificielle créera des miracles ou n’est qu’une autre bulle sur le point d’éclater. nous

La couche inférieure de la fonction de tri C++ utilise le tri par fusion, sa complexité est O(nlogn) et propose différents choix d'algorithmes de tri, notamment le tri rapide, le tri par tas et le tri stable.

La convergence de l’intelligence artificielle (IA) et des forces de l’ordre ouvre de nouvelles possibilités en matière de prévention et de détection de la criminalité. Les capacités prédictives de l’intelligence artificielle sont largement utilisées dans des systèmes tels que CrimeGPT (Crime Prediction Technology) pour prédire les activités criminelles. Cet article explore le potentiel de l’intelligence artificielle dans la prédiction de la criminalité, ses applications actuelles, les défis auxquels elle est confrontée et les éventuelles implications éthiques de cette technologie. Intelligence artificielle et prédiction de la criminalité : les bases CrimeGPT utilise des algorithmes d'apprentissage automatique pour analyser de grands ensembles de données, identifiant des modèles qui peuvent prédire où et quand les crimes sont susceptibles de se produire. Ces ensembles de données comprennent des statistiques historiques sur la criminalité, des informations démographiques, des indicateurs économiques, des tendances météorologiques, etc. En identifiant les tendances qui pourraient échapper aux analystes humains, l'intelligence artificielle peut donner du pouvoir aux forces de l'ordre.

01Aperçu des perspectives Actuellement, il est difficile d'atteindre un équilibre approprié entre efficacité de détection et résultats de détection. Nous avons développé un algorithme YOLOv5 amélioré pour la détection de cibles dans des images de télédétection optique haute résolution, en utilisant des pyramides de caractéristiques multicouches, des stratégies de têtes de détection multiples et des modules d'attention hybrides pour améliorer l'effet du réseau de détection de cibles dans les images de télédétection optique. Selon l'ensemble de données SIMD, le mAP du nouvel algorithme est 2,2 % meilleur que YOLOv5 et 8,48 % meilleur que YOLOX, permettant ainsi d'obtenir un meilleur équilibre entre les résultats de détection et la vitesse. 02 Contexte et motivation Avec le développement rapide de la technologie de télédétection, les images de télédétection optique à haute résolution ont été utilisées pour décrire de nombreux objets à la surface de la Terre, notamment des avions, des voitures, des bâtiments, etc. Détection d'objets dans l'interprétation d'images de télédétection

1. Contexte de la construction de la plateforme 58 Portraits Tout d'abord, je voudrais partager avec vous le contexte de la construction de la plateforme 58 Portraits. 1. La pensée traditionnelle de la plate-forme de profilage traditionnelle ne suffit plus. La création d'une plate-forme de profilage des utilisateurs s'appuie sur des capacités de modélisation d'entrepôt de données pour intégrer les données de plusieurs secteurs d'activité afin de créer des portraits d'utilisateurs précis. Elle nécessite également l'exploration de données pour comprendre le comportement et les intérêts des utilisateurs. et besoins, et fournir des capacités côté algorithmes ; enfin, il doit également disposer de capacités de plate-forme de données pour stocker, interroger et partager efficacement les données de profil utilisateur et fournir des services de profil. La principale différence entre une plate-forme de profilage d'entreprise auto-construite et une plate-forme de profilage de middle-office est que la plate-forme de profilage auto-construite dessert un seul secteur d'activité et peut être personnalisée à la demande. La plate-forme de mid-office dessert plusieurs secteurs d'activité et est complexe ; modélisation et offre des fonctionnalités plus générales. 2.58 Portraits d'utilisateurs de l'arrière-plan de la construction du portrait sur la plate-forme médiane 58

Écrit ci-dessus & La compréhension personnelle de l'auteur est que dans le système de conduite autonome, la tâche de perception est un élément crucial de l'ensemble du système de conduite autonome. L'objectif principal de la tâche de perception est de permettre aux véhicules autonomes de comprendre et de percevoir les éléments environnementaux environnants, tels que les véhicules circulant sur la route, les piétons au bord de la route, les obstacles rencontrés lors de la conduite, les panneaux de signalisation sur la route, etc., aidant ainsi en aval modules Prendre des décisions et des actions correctes et raisonnables. Un véhicule doté de capacités de conduite autonome est généralement équipé de différents types de capteurs de collecte d'informations, tels que des capteurs de caméra à vision panoramique, des capteurs lidar, des capteurs radar à ondes millimétriques, etc., pour garantir que le véhicule autonome peut percevoir et comprendre avec précision l'environnement environnant. éléments , permettant aux véhicules autonomes de prendre les bonnes décisions pendant la conduite autonome. Tête
