Table des matières
Bibliothèque Python de base pour le web scraping
Introduction à BeautifulSoup
Hello, World!
Sortie
Utilisez la bibliothèque de requêtes
Example Domain
Techniques de base de web scraping en Python
Extraire des données à l'aide de sélecteurs CSS et d'expressions XPath
Python Web Scraping
Conclusion
Maison développement back-end Tutoriel Python Techniques de scraping Web et d'extraction de données en Python

Techniques de scraping Web et d'extraction de données en Python

Sep 16, 2023 pm 02:37 PM
python 数据提取 网页抓取

Techniques de scraping Web et dextraction de données en Python

Python est devenu le langage de programmation de choix pour une variété d'applications, et sa polyvalence s'étend au monde du web scraping. Avec son riche écosystème de bibliothèques et de frameworks, Python fournit une boîte à outils puissante pour extraire des données de sites Web et débloquer des informations précieuses. Que vous soyez un passionné de données, un chercheur ou un professionnel de l'industrie, le web scraping en Python peut être une compétence précieuse pour exploiter les grandes quantités d'informations disponibles en ligne.

Dans ce tutoriel, nous plongerons dans le monde du web scraping et explorerons les différentes techniques et outils en Python qui peuvent être utilisés pour extraire des données de sites Web. Nous découvrirons les bases du web scraping, comprendrons les considérations juridiques et éthiques entourant cette pratique et approfondirons les aspects pratiques de l'extraction de données. Dans la prochaine partie de cet article, nous aborderons les bibliothèques Python de base conçues spécifiquement pour le web scraping. Nous examinerons de plus près BeautifulSoup, une bibliothèque populaire pour l'analyse de documents HTML et XML, et explorerons comment vous pouvez l'exploiter pour extraire efficacement des données.

Bibliothèque Python de base pour le web scraping

En ce qui concerne le web scraping en Python, il existe plusieurs bibliothèques importantes qui fournissent les outils et fonctionnalités nécessaires. Dans cette section, nous vous présenterons ces bibliothèques et mettrons en évidence leurs principales fonctionnalités.

Introduction à BeautifulSoup

L'une des bibliothèques de scraping Web les plus populaires en Python est BeautifulSoup. Il nous permet d'analyser et de parcourir facilement les documents HTML et XML. BeautifulSoup facilite l'extraction d'éléments de données spécifiques à partir de pages Web, tels que du texte, des liens, des tableaux, etc.

Pour commencer à utiliser BeautifulSoup, nous devons d’abord l’installer à l’aide du gestionnaire de packages pip de Python. Ouvrez une invite de commande ou un terminal et exécutez la commande suivante :

pip install beautifulsoup4
Copier après la connexion

Après l'installation, nous pouvons importer la bibliothèque et commencer à utiliser ses fonctionnalités. Dans ce didacticiel, nous nous concentrerons sur l'analyse HTML, explorons donc un exemple. Considérez l'extrait HTML suivant :

<html>
  <body>
    <h1 id="Hello-World">Hello, World!</h1>
    <p>Welcome to our website.</p>
  </body>
</html>
Copier après la connexion

Maintenant, écrivons du code Python pour analyser ce code HTML à l'aide de BeautifulSoup :

from bs4 import BeautifulSoup

html = '''
<html>
  <body>
    <h1 id="Hello-World">Hello, World!</h1>
    <p>Welcome to our website.</p>
  </body>
</html>
'''

soup = BeautifulSoup(html, 'html.parser')
title = soup.h1.text
paragraph = soup.p.text

print("Title:", title)
print("Paragraph:", paragraph)
Copier après la connexion

Sortie

Title: Hello, World!
Paragraph: Welcome to our website.
Copier après la connexion

Comme vous pouvez le voir, nous avons importé la classe BeautifulSoup du module « bs4 » et en avons créé une instance en passant le contenu HTML et le type d'analyseur (« html.parser »). Nous utilisons ensuite l'objet "soupe" pour accéder à des éléments spécifiques via des balises (par exemple "h1", "p") et extrayons le texte à l'aide de la propriété ".text".

Utilisez la bibliothèque de requêtes

La bibliothèque Requests est un autre outil important pour le web scraping en Python. Il simplifie le processus de création de requêtes HTTP et de récupération du contenu d'une page Web. Avec les requêtes, nous pouvons obtenir le code HTML d'une page Web, qui peut ensuite être analysé à l'aide de bibliothèques comme BeautifulSoup.

Pour installer la bibliothèque Requests, exécutez la commande suivante dans une invite de commande ou un terminal :

pip install requests
Copier après la connexion

Après l'installation, nous pouvons importer la bibliothèque et commencer à l'utiliser. Regardons un exemple de la façon d'obtenir le contenu HTML d'une page Web :

import requests

url = "https://example.com"
response = requests.get(url)
html_content = response.text

print(html_content)
Copier après la connexion

Sortie

<!doctype html>
<html>
  <head>
    <title>Example Domain</title>
    ...
  </head>
  <body>
    <h1 id="Example-Domain">Example Domain</h1>
    ...
  </body>
</html>
Copier après la connexion

Dans le code ci-dessus, nous avons importé la bibliothèque Requests et fourni l'URL `(https://example.com`) de la page Web que nous souhaitons explorer. Nous envoyons une requête HTTP GET à l'URL spécifiée en utilisant la méthode "get()" et stockons la réponse dans la variable "response". Enfin, on accède au contenu HTML de la réponse grâce à l'attribut ".text".

Techniques de base de web scraping en Python

Dans cette section, nous explorerons quelques techniques de base de web scraping à l'aide de Python. Nous verrons comment utiliser les sélecteurs CSS et les expressions XPath pour récupérer le contenu d'une page Web et extraire des données, ainsi que gérer la pagination lors de l'exploration de plusieurs pages.

Extraire des données à l'aide de sélecteurs CSS et d'expressions XPath

Nous pouvons extraire des données du HTML à l'aide de sélecteurs CSS et d'expressions XPath. BeautifulSoup fournit des méthodes telles que "select()" et "find_all()" pour profiter de ces techniques puissantes.

Considérez l'extrait HTML suivant :

<html>
  <body>
    <div class="container">
      <h1 id="Python-Web-Scraping">Python Web Scraping</h1>
      <ul>
        <li class="item">Data Extraction</li>
        <li class="item">Data Analysis</li>
      </ul>
    </div>
  </body>
</html>
Copier après la connexion

Extrayons les éléments de la liste à l'aide des sélecteurs CSS :

from bs4 import BeautifulSoup

html = '''
<html>
  <body>
    <div class="container">
      <h1 id="Python-Web-Scraping">Python Web Scraping</h1>
      <ul>
        <li class="item">Data Extraction</li>
        <li class="item">Data Analysis</li>
      </ul>
    </div>
  </body>
</html>
'''

soup = BeautifulSoup(html, 'html.parser')
items = soup.select('.item')

for item in items:
    print(item.text)
Copier après la connexion

Sortie

Data Extraction
Data Analysis
Copier après la connexion

Dans le code ci-dessus, nous utilisons la méthode ".select()" et le sélecteur CSS ".item" pour sélectionner tous les éléments avec le nom de classe "item". Nous parcourons ensuite les éléments sélectionnés et imprimons leur texte en utilisant la propriété ".text".

De même, BeautifulSoup prend en charge les expressions XPath pour l'extraction de données. Cependant, pour la fonctionnalité XPath, vous devrez peut-être installer la bibliothèque « lxml », qui n'est pas abordée dans ce didacticiel.

Conclusion

Dans ce tutoriel, nous explorons les techniques de web scraping en Python, en nous concentrant sur les bibliothèques de base. Nous avons introduit BeautifulSoup pour analyser HTML et XML, ainsi que des requêtes pour récupérer du contenu Web. Nous avons fourni des exemples d'utilisation de sélecteurs CSS pour extraire des données et discuté des bases du web scraping. Dans la section suivante, nous aborderons des techniques avancées telles que la gestion des pages de rendu JavaScript et l'utilisation des API. Restez à l’écoute pour plus d’informations dans l’article ci-dessous !

Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Déclaration de ce site Web
Le contenu de cet article est volontairement contribué par les internautes et les droits d'auteur appartiennent à l'auteur original. Ce site n'assume aucune responsabilité légale correspondante. Si vous trouvez un contenu suspecté de plagiat ou de contrefaçon, veuillez contacter admin@php.cn

Outils d'IA chauds

Undresser.AI Undress

Undresser.AI Undress

Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover

AI Clothes Remover

Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool

Undress AI Tool

Images de déshabillage gratuites

Clothoff.io

Clothoff.io

Dissolvant de vêtements AI

AI Hentai Generator

AI Hentai Generator

Générez AI Hentai gratuitement.

Outils chauds

Bloc-notes++7.3.1

Bloc-notes++7.3.1

Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise

SublimeText3 version chinoise

Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1

Envoyer Studio 13.0.1

Puissant environnement de développement intégré PHP

Dreamweaver CS6

Dreamweaver CS6

Outils de développement Web visuel

SublimeText3 version Mac

SublimeText3 version Mac

Logiciel d'édition de code au niveau de Dieu (SublimeText3)

PHP et Python: exemples de code et comparaison PHP et Python: exemples de code et comparaison Apr 15, 2025 am 12:07 AM

PHP et Python ont leurs propres avantages et inconvénients, et le choix dépend des besoins du projet et des préférences personnelles. 1.Php convient au développement rapide et à la maintenance des applications Web à grande échelle. 2. Python domine le domaine de la science des données et de l'apprentissage automatique.

Python vs JavaScript: communauté, bibliothèques et ressources Python vs JavaScript: communauté, bibliothèques et ressources Apr 15, 2025 am 12:16 AM

Python et JavaScript ont leurs propres avantages et inconvénients en termes de communauté, de bibliothèques et de ressources. 1) La communauté Python est amicale et adaptée aux débutants, mais les ressources de développement frontal ne sont pas aussi riches que JavaScript. 2) Python est puissant dans les bibliothèques de science des données et d'apprentissage automatique, tandis que JavaScript est meilleur dans les bibliothèques et les cadres de développement frontaux. 3) Les deux ont des ressources d'apprentissage riches, mais Python convient pour commencer par des documents officiels, tandis que JavaScript est meilleur avec MDNWEBDOCS. Le choix doit être basé sur les besoins du projet et les intérêts personnels.

Explication détaillée du principe docker Explication détaillée du principe docker Apr 14, 2025 pm 11:57 PM

Docker utilise les fonctionnalités du noyau Linux pour fournir un environnement de fonctionnement d'application efficace et isolé. Son principe de travail est le suivant: 1. Le miroir est utilisé comme modèle en lecture seule, qui contient tout ce dont vous avez besoin pour exécuter l'application; 2. Le Système de fichiers Union (UnionFS) empile plusieurs systèmes de fichiers, ne stockant que les différences, l'économie d'espace et l'accélération; 3. Le démon gère les miroirs et les conteneurs, et le client les utilise pour l'interaction; 4. Les espaces de noms et les CGROUP implémentent l'isolement des conteneurs et les limitations de ressources; 5. Modes de réseau multiples prennent en charge l'interconnexion du conteneur. Ce n'est qu'en comprenant ces concepts principaux que vous pouvez mieux utiliser Docker.

Comment exécuter des programmes dans Terminal Vscode Comment exécuter des programmes dans Terminal Vscode Apr 15, 2025 pm 06:42 PM

Dans VS Code, vous pouvez exécuter le programme dans le terminal via les étapes suivantes: Préparez le code et ouvrez le terminal intégré pour vous assurer que le répertoire de code est cohérent avec le répertoire de travail du terminal. Sélectionnez la commande Run en fonction du langage de programmation (tel que Python de Python your_file_name.py) pour vérifier s'il s'exécute avec succès et résoudre les erreurs. Utilisez le débogueur pour améliorer l'efficacité du débogage.

Python: automatisation, script et gestion des tâches Python: automatisation, script et gestion des tâches Apr 16, 2025 am 12:14 AM

Python excelle dans l'automatisation, les scripts et la gestion des tâches. 1) Automatisation: La sauvegarde du fichier est réalisée via des bibliothèques standard telles que le système d'exploitation et la fermeture. 2) Écriture de script: utilisez la bibliothèque PSUTIL pour surveiller les ressources système. 3) Gestion des tâches: utilisez la bibliothèque de planification pour planifier les tâches. La facilité d'utilisation de Python et la prise en charge de la bibliothèque riche en font l'outil préféré dans ces domaines.

L'extension VScode est-elle malveillante? L'extension VScode est-elle malveillante? Apr 15, 2025 pm 07:57 PM

Les extensions de code vs posent des risques malveillants, tels que la cachette de code malveillant, l'exploitation des vulnérabilités et la masturbation comme des extensions légitimes. Les méthodes pour identifier les extensions malveillantes comprennent: la vérification des éditeurs, la lecture des commentaires, la vérification du code et l'installation avec prudence. Les mesures de sécurité comprennent également: la sensibilisation à la sécurité, les bonnes habitudes, les mises à jour régulières et les logiciels antivirus.

Comment installer nginx dans Centos Comment installer nginx dans Centos Apr 14, 2025 pm 08:06 PM

CENTOS L'installation de Nginx nécessite de suivre les étapes suivantes: Installation de dépendances telles que les outils de développement, le devet PCRE et l'OpenSSL. Téléchargez le package de code source Nginx, dézippez-le et compilez-le et installez-le, et spécifiez le chemin d'installation AS / USR / LOCAL / NGINX. Créez des utilisateurs et des groupes d'utilisateurs de Nginx et définissez les autorisations. Modifiez le fichier de configuration nginx.conf et configurez le port d'écoute et le nom de domaine / adresse IP. Démarrez le service Nginx. Les erreurs communes doivent être prêtées à prêter attention, telles que les problèmes de dépendance, les conflits de port et les erreurs de fichiers de configuration. L'optimisation des performances doit être ajustée en fonction de la situation spécifique, comme l'activation du cache et l'ajustement du nombre de processus de travail.

Qu'est-ce que VScode pour quoi est VScode? Qu'est-ce que VScode pour quoi est VScode? Apr 15, 2025 pm 06:45 PM

VS Code est le code Visual Studio Nom complet, qui est un éditeur de code multiplateforme gratuit et open source et un environnement de développement développé par Microsoft. Il prend en charge un large éventail de langages de programmation et fournit une mise en surbrillance de syntaxe, une complétion automatique du code, des extraits de code et des invites intelligentes pour améliorer l'efficacité de développement. Grâce à un écosystème d'extension riche, les utilisateurs peuvent ajouter des extensions à des besoins et des langues spécifiques, tels que les débogueurs, les outils de mise en forme de code et les intégrations GIT. VS Code comprend également un débogueur intuitif qui aide à trouver et à résoudre rapidement les bogues dans votre code.

See all articles