Quelles fonctionnalités de fiabilité les microservices développés sur la base de Golang peuvent-ils fournir ?
Avec la popularité de l'architecture des microservices, les développeurs accordent de plus en plus d'attention à la manière de créer des microservices fiables, robustes et performants. En tant que langage de programmation puissant, Golang a reçu une large attention pour sa simplicité, son efficacité et ses performances en matière de concurrence. Cet article présentera comment les microservices développés sur la base de Golang fournissent des fonctions de fiabilité et donnera des exemples de code spécifiques.
package main import ( "context" "fmt" "net/http" "time" ) func main() { // 创建一个带有超时时间的context ctx, cancel := context.WithTimeout(context.Background(), 2*time.Second) defer cancel() // 启动一个goroutine执行耗时操作 go func() { time.Sleep(3 * time.Second) fmt.Println("耗时操作完成") }() // 使用select语句等待操作完成或超时 select { case <-ctx.Done(): fmt.Println("操作超时") case <-time.After(5 * time.Second): fmt.Println("耗时操作完成") } }
Le code ci-dessus imprimera "Délai d'expiration de l'opération" lorsque l'opération fastidieuse dépasse 2 secondes, et imprimera "Opération fastidieuse terminée" une fois l'opération terminée.
package main import ( "fmt" "time" "github.com/afex/hystrix-go/hystrix" ) func main() { // 配置熔断器 hystrix.ConfigureCommand("my_command", hystrix.CommandConfig{ Timeout: 1000, MaxConcurrentRequests: 10, ErrorPercentThreshold: 25, }) // 执行熔断器命令 err := hystrix.Do("my_command", func() error { // 调用依赖的服务 time.Sleep(2 * time.Second) return nil }, func(err error) error { // 降级处理 fmt.Println("依赖服务不可用") return nil }) if err != nil { fmt.Println("失败") } }
Le code ci-dessus renverra une erreur et effectuera un traitement de rétrogradation lorsque l'appel de service dépendant dépasse 1 seconde.
package main import ( "fmt" "log" "net/http" "time" "github.com/opentracing/opentracing-go" "github.com/opentracing/opentracing-go/ext" "github.com/uber/jaeger-client-go" "github.com/uber/jaeger-client-go/config" ) func main() { // 配置Jaeger tracer cfg := &config.Configuration{ ServiceName: "my_service", Sampler: &config.SamplerConfig{ Type: jaeger.SamplerTypeConst, Param: 1, }, Reporter: &config.ReporterConfig{ LogSpans: true, }, } tracer, closer, err := cfg.NewTracer(config.Logger(jaeger.StdLogger)) if err != nil { log.Fatal(err) } defer closer.Close() // 注册全局tracer opentracing.SetGlobalTracer(tracer) // 创建一个HTTP请求 req, _ := http.NewRequest("GET", "https://www.example.com", nil) // 创建一个span并设置相关属性 span := tracer.StartSpan("http_request") defer span.Finish() ext.SpanKindRPCClient.Set(span) ext.HTTPUrl.Set(span, req.URL.String()) ext.HTTPMethod.Set(span, req.Method) span.SetTag("my_tag", "my_value") // 模拟发送HTTP请求 time.Sleep(1 * time.Second) fmt.Println("请求完成") }
Le code ci-dessus affichera le statut de la demande et enverra les informations pertinentes au serveur Jaeger pour le suivi et l'analyse.
En résumé, les microservices développés sur la base de Golang peuvent améliorer la fiabilité et la stabilité du système grâce à des fonctions de fiabilité telles que le traitement des délais d'attente, les disjoncteurs et le traçage distribué. Ces exemples de codes ne sont que quelques exemples simples, et les applications réelles peuvent nécessiter une optimisation et une extension supplémentaires en fonction de scénarios spécifiques.
Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!