


Comment implémenter un algorithme de recherche en profondeur en C#
Comment implémenter l'algorithme de recherche en profondeur en C#
Depth First Search (DFS) est un algorithme de traversée de graphes couramment utilisé. C'est l'un des algorithmes utilisés pour parcourir ou rechercher un arbre ou un graphique. En C#, nous pouvons implémenter de manière récursive l’algorithme de recherche en profondeur. Cet article explique comment implémenter l'algorithme de recherche en profondeur en C# et donne des exemples de code pertinents.
- Idée d'algorithme
L'algorithme de recherche en profondeur commence à partir d'un sommet, traverse progressivement vers le bas jusqu'à ce qu'il atteigne le point le plus profond, puis revient au sommet précédent, puis sélectionne le prochain sommet adjacent non visité pour continuer à parcourir jusqu'à tous les sommets. ont été visités. L'implémentation spécifique peut être réalisée en utilisant la récursion, en appelant continuellement des fonctions de manière récursive.
- Implémentation de l'algorithme
Ci-dessous, nous utilisons un exemple simple pour illustrer comment implémenter l'algorithme de recherche en profondeur d'abord en C#. Supposons que nous ayons une matrice de contiguïté d'un graphe connecté et que notre objectif soit de partir d'un sommet de départ donné et de parcourir l'intégralité du graphe pour trouver tous les sommets. Voici un exemple de code qui implémente un algorithme de recherche en profondeur d'abord :
using System; using System.Collections.Generic; namespace DFSExample { class Program { static int[][] graph; static bool[] visited; static void Main(string[] args) { // 初始化邻接矩阵 InitializeGraph(); // 初始化visited数组 visited = new bool[graph.Length]; // 从顶点0开始遍历 DFS(0); Console.ReadLine(); } static void InitializeGraph() { // 定义邻接矩阵 graph = new int[][] { new int[] {0, 1, 1, 0, 0, 0}, new int[] {1, 0, 0, 1, 1, 0}, new int[] {1, 0, 0, 0, 0, 1}, new int[] {0, 1, 0, 0, 0, 0}, new int[] {0, 1, 0, 0, 0, 0}, new int[] {0, 0, 1, 0, 0, 0} }; } static void DFS(int vertex) { // 标记当前顶点为已访问 visited[vertex] = true; Console.WriteLine("Visited vertex: " + vertex); // 遍历当前顶点的邻接顶点 for (int i = 0; i < graph.Length; i++) { if (graph[vertex][i] == 1 && !visited[i]) { DFS(i); } } } } }
Ce code implémente un algorithme de recherche simple en profondeur d'abord. Nous définissons d'abord une matrice d'adjacence pour représenter la connectivité du graphe. Ensuite, un tableau visité est défini pour enregistrer l'état de visite de chaque sommet. Dans la fonction DFS, le sommet actuel est d'abord marqué comme visité et la valeur du sommet actuel est affichée. Parcourez ensuite les sommets adjacents du sommet actuel. Si les sommets adjacents n'ont pas été visités, continuez à appeler la fonction DFS de manière récursive jusqu'à ce que tous les sommets aient été visités.
- Résultats d'exécution
En exécutant le code ci-dessus, vous pouvez obtenir les résultats de sortie suivants :
Visited vertex: 0 Visited vertex: 1 Visited vertex: 3 Visited vertex: 4 Visited vertex: 2 Visited vertex: 5
Ces résultats de sortie représentent le processus de visite de chaque sommet en séquence à partir du sommet de départ 0 selon l'algorithme de recherche en profondeur d'abord. .
Résumé
Cet article présente comment implémenter l'algorithme de recherche en profondeur d'abord en C# et donne des exemples de code pertinents. Les algorithmes de recherche en profondeur peuvent être facilement implémentés de manière récursive pour parcourir un graphique ou un arbre. Les algorithmes de recherche en profondeur sont largement utilisés dans de nombreux scénarios d'application, tels que le jugement de connectivité graphique, le tri topologique, etc. Les lecteurs peuvent créer d'autres extensions et applications basées sur les exemples de code contenus dans cet article.
Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Outils d'IA chauds

Undresser.AI Undress
Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover
Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool
Images de déshabillage gratuites

Clothoff.io
Dissolvant de vêtements AI

Video Face Swap
Échangez les visages dans n'importe quelle vidéo sans effort grâce à notre outil d'échange de visage AI entièrement gratuit !

Article chaud

Outils chauds

Bloc-notes++7.3.1
Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise
Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1
Puissant environnement de développement intégré PHP

Dreamweaver CS6
Outils de développement Web visuel

SublimeText3 version Mac
Logiciel d'édition de code au niveau de Dieu (SublimeText3)

Sujets chauds





Les méthodes d'utilisation des symboles dans la couverture du langage C Couverture arithmétique, l'affectation, les conditions, la logique, les opérateurs de bits, etc. Les opérateurs arithmétiques sont utilisés pour les opérations mathématiques de base, les opérateurs d'affectation sont utilisés pour les opérations et les opérations de la soustraction, la multiplication et les opérations de division, les opérations BIT sont utilisé pointeurs nuls, marqueurs de fin de fichier et valeurs non nucères.

En C, le type de char est utilisé dans les chaînes: 1. Stockez un seul caractère; 2. Utilisez un tableau pour représenter une chaîne et se terminer avec un terminateur nul; 3. Faire fonctionner via une fonction de fonctionnement de chaîne; 4. Lisez ou sortant une chaîne du clavier.

Dans le langage C, les caractères spéciaux sont traités à travers des séquences d'échappement, telles que: \ n représente les pauses de ligne. \ t signifie le caractère d'onglet. Utilisez des séquences d'échappement ou des constantes de caractères pour représenter des caractères spéciaux, tels que char c = '\ n'. Notez que l'arrière-plan doit être échappé deux fois. Différentes plates-formes et compilateurs peuvent avoir différentes séquences d'échappement, veuillez consulter la documentation.

Dans le langage C, la principale différence entre Char et WCHAR_T est le codage des caractères: Char utilise ASCII ou étend ASCII, WCHAR_T utilise Unicode; Char prend 1 à 2 octets, WCHAR_T occupe 2-4 octets; Char convient au texte anglais, WCHAR_T convient au texte multilingue; Le char est largement pris en charge, WCHAR_T dépend de la prise en charge du compilateur et du système d'exploitation Unicode; Le char est limité dans la gamme de caractères, WCHAR_T a une gamme de caractères plus grande et des fonctions spéciales sont utilisées pour les opérations arithmétiques.

La différence entre le multithreading et l'asynchrone est que le multithreading exécute plusieurs threads en même temps, tandis que les opérations effectuent de manière asynchrone sans bloquer le thread actuel. Le multithreading est utilisé pour les tâches à forte intensité de calcul, tandis que de manière asynchrone est utilisée pour l'interaction utilisateur. L'avantage du multi-threading est d'améliorer les performances informatiques, tandis que l'avantage des asynchrones est de ne pas bloquer les threads d'interface utilisateur. Le choix du multithreading ou asynchrone dépend de la nature de la tâche: les tâches à forte intensité de calcul utilisent le multithreading, les tâches qui interagissent avec les ressources externes et doivent maintenir la réactivité de l'interface utilisateur à utiliser asynchrone.

Dans le langage C, la conversion de type char peut être directement convertie en un autre type par: Casting: Utilisation de caractères de casting. Conversion de type automatique: Lorsqu'un type de données peut accueillir un autre type de valeur, le compilateur le convertit automatiquement.

Il n'y a pas de fonction de somme intégrée dans le langage C, il doit donc être écrit par vous-même. La somme peut être obtenue en traversant le tableau et en accumulant des éléments: Version de boucle: la somme est calculée à l'aide de la longueur de boucle et du tableau. Version du pointeur: Utilisez des pointeurs pour pointer des éléments de tableau, et un résumé efficace est réalisé grâce à des pointeurs d'auto-incitation. Allouer dynamiquement la version du tableau: allouer dynamiquement les tableaux et gérer la mémoire vous-même, en veillant à ce que la mémoire allouée soit libérée pour empêcher les fuites de mémoire.

Le Array Char stocke des séquences de caractères en C et est déclaré Char Array_name [Taille]. L'élément d'accès est passé par l'opérateur d'indice, et l'élément se termine par le terminateur nul «\ 0», qui représente le point final de la chaîne. Le langage C fournit une variété de fonctions de manipulation de cordes, telles que strlen (), strcpy (), strcat () et strcmp ().
