Idées de conception d'algorithmes PHP : Comment parvenir à une solution efficace au problème de sous-séquence commune maximale ?
La sous-séquence commune la plus longue (LCS) est le problème de trouver la sous-séquence identique la plus longue dans deux chaînes. Dans les applications pratiques, LCS est largement utilisé dans des domaines tels que la comparaison de similarité de texte, le contrôle de version et la comparaison de séquences d'ADN. Cet article présentera une solution efficace pour résoudre ce problème et fournira des exemples de code spécifiques.
Idée d'algorithme :
La programmation dynamique est une méthode courante pour résoudre les problèmes LCS. Le problème LCS a la propriété de sous-structure optimale, c'est-à-dire que la sous-séquence commune la plus longue de deux séquences peut être construite par la sous-séquence commune la plus longue du sous-problème. Selon cette propriété, une méthode de programmation dynamique peut être utilisée pour résoudre le problème LCS.
Les étapes spécifiques de l'algorithme sont les suivantes :
Créez un tableau bidimensionnel dpm+1, où m et n sont respectivement les longueurs des deux chaînes d'entrée.
Parcourez chaque caractère de deux chaînes, pour le i-ème caractère de la première chaîne et le j-ème caractère de la deuxième chaîne :
Exemple de code :
fonction la plus longueCommonSubsequence($str1, $str2){
$m = strlen($str1); $n = strlen($str2); $dp = array(); for($i=0; $i<=$m; $i++){ $dp[$i] = array_fill(0, $n+1, 0); } for($i=1; $i<=$m; $i++){ for($j=1; $j<=$n; $j++){ if($str1[$i-1] == $str2[$j-1]){ $dp[$i][$j] = $dp[$i-1][$j-1] + 1; } else{ $dp[$i][$j] = max($dp[$i-1][$j], $dp[$i][$j-1]); } } } $lcs = ""; $i = $m; $j = $n; while($i>0 && $j>0){ if($str1[$i-1] == $str2[$j-1]){ $lcs = $str1[$i-1] . $lcs; $i--; $j--; } else if($dp[$i-1][$j] > $dp[$i][$j-1]){ $i--; } else{ $j--; } } return $lcs;
}
$str1 = "ABCBDAB";
$str2 = "BDCAB";
$lcs = la plus longueCommonSubsequence( $str1, $str2);
echo "Chaînes d'entrée : $str1 et $str2
";
echo "La sous-séquence commune la plus longue est : $lcs
";
?>
Le Le code ci-dessus affichera :
Chaînes d'entrée : ABCBDAB et BDCAB
La sous-séquence commune la plus longue est : BCBA
Conclusion :
Cet article présente l'idée et le code PHP spécifique d'utiliser un algorithme de programmation dynamique pour résoudre le problème de sous-séquence commune maximale Exemple. En utilisant la programmation dynamique, les problèmes LCS peuvent être résolus efficacement. La complexité temporelle de cet algorithme est O(m*n), où m et n sont respectivement les longueurs des deux chaînes d'entrée. Dans les applications pratiques, l'algorithme peut être optimisé en fonction des besoins, par exemple en utilisant des techniques telles que les tableaux roulants pour réduire la complexité spatiale.
Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!