Maison développement back-end Tutoriel C#.Net Comment implémenter un algorithme de classification de texte en C#

Comment implémenter un algorithme de classification de texte en C#

Sep 19, 2023 pm 12:58 PM
算法 文本分类 c#

Comment implémenter un algorithme de classification de texte en C#

Comment implémenter un algorithme de classification de texte en C#

La classification de texte est une tâche classique d'apprentissage automatique dont le but est de classer des données textuelles données dans des catégories prédéfinies. En C#, nous pouvons utiliser certaines bibliothèques et algorithmes d’apprentissage automatique courants pour implémenter la classification de texte. Cet article explique comment utiliser C# pour implémenter des algorithmes de classification de texte et fournit des exemples de code spécifiques.

  1. Prétraitement des données

Avant la classification du texte, nous devons prétraiter les données du texte. Les étapes de prétraitement comprennent la suppression des mots vides (mots dénués de sens tels que « a » et « le »), la segmentation des mots et la suppression de la ponctuation. En C#, vous pouvez utiliser des bibliothèques tierces telles que NLTK (Natural Language Toolkit) ou Stanford.NLP pour vous aider dans ces opérations.

Ce qui suit est un exemple de code pour le prétraitement de texte à l'aide de Stanford.NLP :

using System;
using System.Collections.Generic;
using System.IO;
using Stanford.NLP.Coref;
using Stanford.NLP.CoreLexical;
using Stanford.NLP.CoreNeural;
using Stanford.NLP.CoreNLP;
using Stanford.NLP.CoreNLP.Coref;
using Stanford.NLP.CoreNLP.Lexical;
using Stanford.NLP.CoreNLP.Parser;
using Stanford.NLP.CoreNLP.Sentiment;
using Stanford.NLP.CoreNLP.Tokenize;
using Stanford.NLP.CoreNLP.Transform;

namespace TextClassification
{
    class Program
    {
        static void Main(string[] args)
        {
            var pipeline = new StanfordCoreNLP(Properties);

            string text = "This is an example sentence.";
            
            var annotation = new Annotation(text);
            pipeline.annotate(annotation);

            var sentences = annotation.get(new CoreAnnotations.SentencesAnnotation().GetType()) as List<CoreMap>;
            foreach (var sentence in sentences)
            {
                var tokens = sentence.get(new CoreAnnotations.TokensAnnotation().GetType()) as List<CoreLabel>;
                foreach (var token in tokens)
                {
                    string word = token.get(CoreAnnotations.TextAnnotation.getClass()) as string;
                    Console.WriteLine(word);
                }
            }            
        }
    }
}
Copier après la connexion
  1. Extraction de fonctionnalités

Avant la classification de texte, nous devons convertir les données textuelles en caractéristiques numériques. Les méthodes d'extraction de fonctionnalités couramment utilisées incluent Bag-of-Words, TF-IDF, Word2Vec, etc. En C#, vous pouvez utiliser des bibliothèques tierces telles que SharpnLP ou Numl pour faciliter l'extraction de fonctionnalités.

Ce qui suit est un exemple de code pour l'extraction de caractéristiques d'un modèle en sac de mots à l'aide de SharpnLP :

using System;
using System.Collections.Generic;
using Sharpnlp.Tokenize;
using Sharpnlp.Corpus;

namespace TextClassification
{
    class Program
    {
        static void Main(string[] args)
        {
            var tokenizer = new TokenizerME();
            var wordList = new List<string>();

            string text = "This is an example sentence.";

            string[] tokens = tokenizer.Tokenize(text);
            wordList.AddRange(tokens);

            foreach (var word in wordList)
            {
                Console.WriteLine(word);
            }
        }
    }
}
Copier après la connexion
  1. Création d'un modèle et formation

Après avoir terminé le prétraitement des données et l'extraction des caractéristiques, nous pouvons utiliser des algorithmes d'apprentissage automatique pour créer un modèle de classification. et réaliser le train miniature. Les algorithmes de classification couramment utilisés incluent Naive Bayes, Support Vector Machine (SVM), Decision Tree, etc. En C#, des bibliothèques tierces telles que Numl ou ML.NET peuvent être utilisées pour faciliter la création et la formation de modèles.

Ce qui suit est un exemple de code pour entraîner un modèle de classification Naive Bayes à l'aide de Numl :

using System;
using Numl;
using Numl.Supervised;
using Numl.Supervised.NaiveBayes;

namespace TextClassification
{
    class Program
    {
        static void Main(string[] args)
        {
            var descriptor = new Descriptor();

            var reader = new CsvReader("data.csv");
            var examples = reader.Read<Example>();

            var model = new NaiveBayesGenerator(descriptor.Generate(examples));

            var predictor = model.Generate<Example>();

            var example = new Example() { Text = "This is a test sentence." };

            var prediction = predictor.Predict(example);

            Console.WriteLine("Category: " + prediction.Category);
        }
    }

    public class Example
    {
        public string Text { get; set; }
        public string Category { get; set; }
    }
}
Copier après la connexion

Dans l'exemple de code, nous définissons d'abord un descripteur de fonctionnalité, puis utilisons CsvReader pour lire les données d'entraînement et utilisons NaiveBayesGenerator pour générer Naive Bayes Yessian. modèle de classement. Nous pouvons ensuite utiliser le modèle généré pour faire des prédictions de classification pour un nouveau texte.

Résumé

Grâce aux étapes ci-dessus, nous pouvons implémenter l'algorithme de classification de texte en C#. Tout d'abord, les données textuelles sont prétraitées, puis l'extraction des caractéristiques est effectuée et enfin, un algorithme d'apprentissage automatique est utilisé pour créer un modèle de classification et l'entraîner. J'espère que cet article vous aidera à comprendre et à appliquer les algorithmes de classification de texte en C#.

Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Déclaration de ce site Web
Le contenu de cet article est volontairement contribué par les internautes et les droits d'auteur appartiennent à l'auteur original. Ce site n'assume aucune responsabilité légale correspondante. Si vous trouvez un contenu suspecté de plagiat ou de contrefaçon, veuillez contacter admin@php.cn

Outils d'IA chauds

Undresser.AI Undress

Undresser.AI Undress

Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover

AI Clothes Remover

Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool

Undress AI Tool

Images de déshabillage gratuites

Clothoff.io

Clothoff.io

Dissolvant de vêtements AI

Video Face Swap

Video Face Swap

Échangez les visages dans n'importe quelle vidéo sans effort grâce à notre outil d'échange de visage AI entièrement gratuit !

Outils chauds

Bloc-notes++7.3.1

Bloc-notes++7.3.1

Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise

SublimeText3 version chinoise

Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1

Envoyer Studio 13.0.1

Puissant environnement de développement intégré PHP

Dreamweaver CS6

Dreamweaver CS6

Outils de développement Web visuel

SublimeText3 version Mac

SublimeText3 version Mac

Logiciel d'édition de code au niveau de Dieu (SublimeText3)

Active Directory avec C# Active Directory avec C# Sep 03, 2024 pm 03:33 PM

Guide d'Active Directory avec C#. Nous discutons ici de l'introduction et du fonctionnement d'Active Directory en C# ainsi que de la syntaxe et de l'exemple.

Sérialisation C# Sérialisation C# Sep 03, 2024 pm 03:30 PM

Guide de sérialisation C#. Nous discutons ici de l'introduction, des étapes de l'objet de sérialisation C#, du fonctionnement et de l'exemple respectivement.

Générateur de nombres aléatoires en C# Générateur de nombres aléatoires en C# Sep 03, 2024 pm 03:34 PM

Guide du générateur de nombres aléatoires en C#. Nous discutons ici du fonctionnement du générateur de nombres aléatoires, du concept de nombres pseudo-aléatoires et sécurisés.

Vue Grille de données C# Vue Grille de données C# Sep 03, 2024 pm 03:32 PM

Guide de la vue Grille de données C#. Nous discutons ici des exemples de la façon dont une vue de grille de données peut être chargée et exportée à partir de la base de données SQL ou d'un fichier Excel.

Modèles en C# Modèles en C# Sep 03, 2024 pm 03:33 PM

Guide des modèles en C#. Nous discutons ici de l'introduction et des 3 principaux types de modèles en C# ainsi que de ses exemples et de l'implémentation du code.

Nombres premiers en C# Nombres premiers en C# Sep 03, 2024 pm 03:35 PM

Guide des nombres premiers en C#. Nous discutons ici de l'introduction et des exemples de nombres premiers en c# ainsi que de l'implémentation du code.

Factorielle en C# Factorielle en C# Sep 03, 2024 pm 03:34 PM

Guide de Factorial en C#. Nous discutons ici de l'introduction de factorial en c# ainsi que de différents exemples et de l'implémentation du code.

La différence entre le multithreading et le C # asynchrone La différence entre le multithreading et le C # asynchrone Apr 03, 2025 pm 02:57 PM

La différence entre le multithreading et l'asynchrone est que le multithreading exécute plusieurs threads en même temps, tandis que les opérations effectuent de manière asynchrone sans bloquer le thread actuel. Le multithreading est utilisé pour les tâches à forte intensité de calcul, tandis que de manière asynchrone est utilisée pour l'interaction utilisateur. L'avantage du multi-threading est d'améliorer les performances informatiques, tandis que l'avantage des asynchrones est de ne pas bloquer les threads d'interface utilisateur. Le choix du multithreading ou asynchrone dépend de la nature de la tâche: les tâches à forte intensité de calcul utilisent le multithreading, les tâches qui interagissent avec les ressources externes et doivent maintenir la réactivité de l'interface utilisateur à utiliser asynchrone.

See all articles