PHP 5.0对象模型深度探索之构造和析构_PHP
如果你在一个类中声明一个函数,命名为__construct,这个函数将被当成是一个构造函数并在建立一个对象实例时被执行。清楚地说,__是两个下划线。就像其它任何函数一样,构造函数可能有参数或者默认值. 你可以定义一个类来建立一个对象并将其属性全放在一个语句(statement)中。
你也可以定义一个名为__destruct的函数,PHP将在对象被销毁前调用这个函数. 它称为析构函数.
继承是类的一个强大功能。一个类(子类/派生类)可以继承另一类(父类/基类)的功能. 派生类将包含有基类的所有属性和方法,并可以在派生类中加上其他属性和方法。你也可以覆写基类的方法和属性。就像前文中显示的,你可以用extends关键字来继承一个类。
你可能想知道构造函数是如何被继承的。当它们和其它方法一起被继承时,他们不会在创建对象时被执行。
如果你需要这个功能,你需要用第二章提到的::运算符. 它允许你指向一块命名空间. parent指向父类命名空间,你可以用parent::__construct来调用父类的构造函数。
一些面向对象语言在类之后命名构造函数。PHP的前几个版本也是如此,到现在这种方法仍然有效.也就是:如果你把一个类命名为Animal并且在其中建立一个命名也是Animal的方法,则这个方法就是构造函数.如果一个类的同时拥有__construt构造函数和与类名相同的函数,PHP将把__construct看作构造函数。这使得用以前的PHP版本所写的类仍然可以使用. 但新的脚本(PHP5)应当使用__construct。
PHP的这种新的声明构造函数的方法可以使构造函数有一个独一无二的名称,无论它所在的类的名称是什么。这样你在改变类的名称时,就不需要改变构造函数的名称。
你可能在PHP中给构造函数一个像其它类方法一样的访问方式。访问方式将会影响从一定范围内实例化对象的能力。这允许实现一些固定的设计模式,如Singleton模式。
析构函数,相反于构造函数。PHP调用它们来将一个对象从内存中销毁。默认地,PHP仅仅释放对象属性所占用的内存并销毁对象相关的资源。析构函数允许你在使用一个对象之后执行任意代码来清除内存。
当PHP决定你的脚本不再与对象相关时,析构函数将被调用. 在一个函数的命名空间内,这会发生在函数return的时候. 对于全局变量,这发生于脚本结束的时候. 如果你想明确地销毁一个对象,你可以给指向该对象的变量分配任何其它值. 通常将变量赋值勤为NULL或者调用unset。
下面的例子中,计算从类中实例化的对象的个数. Counter类从构造函数开始增值,在析构函数减值。
一旦你定义了一个类,你可以用new来建立一个这个类的实例. 类的定义是设计图,实例则是放在装配线上的元件. New需要类的名称,并返回该类的一个实例。如果构造函数需要参数,你应当在new后输入参数。
class Counter
{
private static $count = 0;
function __construct()
{
self::$count ;
}
function __destruct()
{
self::$count--;
}
function getCount()
{
return self::$count;
}
}
//建立第一个实例
$c = new Counter();
//输出1
print($c->getCount() . "n");
//建立第二个实例
$c2 = new Counter();
//输出2
print($c->getCount() . "n");
//销毁实例
$c2 = NULL;
//输出1
print($c->getCount() . "n");
?>

Outils d'IA chauds

Undresser.AI Undress
Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover
Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool
Images de déshabillage gratuites

Clothoff.io
Dissolvant de vêtements AI

AI Hentai Generator
Générez AI Hentai gratuitement.

Article chaud

Outils chauds

Bloc-notes++7.3.1
Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise
Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1
Puissant environnement de développement intégré PHP

Dreamweaver CS6
Outils de développement Web visuel

SublimeText3 version Mac
Logiciel d'édition de code au niveau de Dieu (SublimeText3)

Sujets chauds

Imaginez un modèle d'intelligence artificielle qui non seulement a la capacité de surpasser l'informatique traditionnelle, mais qui permet également d'obtenir des performances plus efficaces à moindre coût. Ce n'est pas de la science-fiction, DeepSeek-V2[1], le modèle MoE open source le plus puissant au monde est ici. DeepSeek-V2 est un puissant mélange de modèle de langage d'experts (MoE) présentant les caractéristiques d'une formation économique et d'une inférence efficace. Il est constitué de 236B paramètres, dont 21B servent à activer chaque marqueur. Par rapport à DeepSeek67B, DeepSeek-V2 offre des performances plus élevées, tout en économisant 42,5 % des coûts de formation, en réduisant le cache KV de 93,3 % et en augmentant le débit de génération maximal à 5,76 fois. DeepSeek est une entreprise explorant l'intelligence artificielle générale

Plus tôt ce mois-ci, des chercheurs du MIT et d'autres institutions ont proposé une alternative très prometteuse au MLP – KAN. KAN surpasse MLP en termes de précision et d’interprétabilité. Et il peut surpasser le MLP fonctionnant avec un plus grand nombre de paramètres avec un très petit nombre de paramètres. Par exemple, les auteurs ont déclaré avoir utilisé KAN pour reproduire les résultats de DeepMind avec un réseau plus petit et un degré d'automatisation plus élevé. Plus précisément, le MLP de DeepMind compte environ 300 000 paramètres, tandis que le KAN n'en compte qu'environ 200. KAN a une base mathématique solide comme MLP est basé sur le théorème d'approximation universelle, tandis que KAN est basé sur le théorème de représentation de Kolmogorov-Arnold. Comme le montre la figure ci-dessous, KAN a

La dernière vidéo du robot Optimus de Tesla est sortie, et il peut déjà fonctionner en usine. À vitesse normale, il trie les batteries (les batteries 4680 de Tesla) comme ceci : Le responsable a également publié à quoi cela ressemble à une vitesse 20 fois supérieure - sur un petit "poste de travail", en sélectionnant et en sélectionnant et en sélectionnant : Cette fois, il est publié L'un des points forts de la vidéo est qu'Optimus réalise ce travail en usine, de manière totalement autonome, sans intervention humaine tout au long du processus. Et du point de vue d'Optimus, il peut également récupérer et placer la batterie tordue, en se concentrant sur la correction automatique des erreurs : concernant la main d'Optimus, le scientifique de NVIDIA Jim Fan a donné une évaluation élevée : la main d'Optimus est l'un des robots à cinq doigts du monde. le plus adroit. Ses mains ne sont pas seulement tactiles

Le FP8 et la précision de quantification inférieure en virgule flottante ne sont plus le « brevet » du H100 ! Lao Huang voulait que tout le monde utilise INT8/INT4, et l'équipe Microsoft DeepSpeed a commencé à exécuter FP6 sur A100 sans le soutien officiel de NVIDIA. Les résultats des tests montrent que la quantification FP6 de la nouvelle méthode TC-FPx sur A100 est proche ou parfois plus rapide que celle de INT4, et a une précision supérieure à celle de cette dernière. En plus de cela, il existe également une prise en charge de bout en bout des grands modèles, qui ont été open source et intégrés dans des cadres d'inférence d'apprentissage profond tels que DeepSpeed. Ce résultat a également un effet immédiat sur l'accélération des grands modèles : dans ce cadre, en utilisant une seule carte pour exécuter Llama, le débit est 2,65 fois supérieur à celui des cartes doubles. un

Afin d'aligner les grands modèles de langage (LLM) sur les valeurs et les intentions humaines, il est essentiel d'apprendre les commentaires humains pour garantir qu'ils sont utiles, honnêtes et inoffensifs. En termes d'alignement du LLM, une méthode efficace est l'apprentissage par renforcement basé sur le retour humain (RLHF). Bien que les résultats de la méthode RLHF soient excellents, certains défis d’optimisation sont impliqués. Cela implique de former un modèle de récompense, puis d'optimiser un modèle politique pour maximiser cette récompense. Récemment, certains chercheurs ont exploré des algorithmes hors ligne plus simples, dont l’optimisation directe des préférences (DPO). DPO apprend le modèle politique directement sur la base des données de préférence en paramétrant la fonction de récompense dans RLHF, éliminant ainsi le besoin d'un modèle de récompense explicite. Cette méthode est simple et stable

1. Introduction Au cours des dernières années, les YOLO sont devenus le paradigme dominant dans le domaine de la détection d'objets en temps réel en raison de leur équilibre efficace entre le coût de calcul et les performances de détection. Les chercheurs ont exploré la conception architecturale de YOLO, les objectifs d'optimisation, les stratégies d'expansion des données, etc., et ont réalisé des progrès significatifs. Dans le même temps, le recours à la suppression non maximale (NMS) pour le post-traitement entrave le déploiement de bout en bout de YOLO et affecte négativement la latence d'inférence. Dans les YOLO, la conception de divers composants manque d’une inspection complète et approfondie, ce qui entraîne une redondance informatique importante et limite les capacités du modèle. Il offre une efficacité sous-optimale et un potentiel d’amélioration des performances relativement important. Dans ce travail, l'objectif est d'améliorer encore les limites d'efficacité des performances de YOLO à la fois en post-traitement et en architecture de modèle. à cette fin

À la pointe de la technologie logicielle, le groupe de l'UIUC Zhang Lingming, en collaboration avec des chercheurs de l'organisation BigCode, a récemment annoncé le modèle de grand code StarCoder2-15B-Instruct. Cette réalisation innovante a permis une percée significative dans les tâches de génération de code, dépassant avec succès CodeLlama-70B-Instruct et atteignant le sommet de la liste des performances de génération de code. Le caractère unique de StarCoder2-15B-Instruct réside dans sa stratégie d'auto-alignement pur. L'ensemble du processus de formation est ouvert, transparent et complètement autonome et contrôlable. Le modèle génère des milliers d'instructions via StarCoder2-15B en réponse au réglage fin du modèle de base StarCoder-15B sans recourir à des annotations manuelles coûteuses.

La série de référence YOLO de systèmes de détection de cibles a une fois de plus reçu une mise à niveau majeure. Depuis la sortie de YOLOv9 en février de cette année, le relais de la série YOLO (YouOnlyLookOnce) a été passé entre les mains de chercheurs de l'Université Tsinghua. Le week-end dernier, la nouvelle du lancement de YOLOv10 a attiré l'attention de la communauté IA. Il est considéré comme un cadre révolutionnaire dans le domaine de la vision par ordinateur et est connu pour ses capacités de détection d'objets de bout en bout en temps réel, poursuivant l'héritage de la série YOLO en fournissant une solution puissante alliant efficacité et précision. Adresse de l'article : https://arxiv.org/pdf/2405.14458 Adresse du projet : https://github.com/THU-MIG/yo
