Le plus petit nombre trigonométrique supérieur à p
Nous discuterons des nombres triangulaires et de la façon de trouver le plus petit nombre triangulaire qui est seulement supérieur au nombre donné "num". Discutons d'abord de ce que sont les nombres trigonométriques, puis trouvons le plus petit nombre trigonométrique supérieur à « num »
Nous verrons deux approches différentes du même problème. Dans la première méthode, nous exécuterons une boucle simple pour générer la sortie, tandis que dans la deuxième méthode, nous générerons d'abord une formule générale pour calculer le nombre requis, puis appliquerons directement cette formule pour obtenir le nombre minimum de Triangle. p>
Énoncé du problème
Nous devons trouver le plus petit nombre de triangles qui soit seulement plus grand que "num".
Nous avons plusieurs boîtes avec des balles. Le nombre de balles que contient la boîte est un nombre triangulaire différent pour toutes les boîtes. Les cases sont numérotées de 1 à n. Nous devons découvrir quelle boîte contiendra le nombre minimum de balles après avoir retiré "num" balles de la boîte.
Comprenons cela à travers un exemple
Input number was: num = 5
Nous devons découvrir quelle boîte contient le moins de balles après avoir retiré 5 balles
Output:3rd box will contain a minimum of balls after removing 4 balls.
Solution pour cet exemple -
Boxes with number of balls: {1 3 6 10 ....} Box 3 will contain only 1 ball after removing 4 balls from it.
Que sont les nombres trigonométriques ?
Les nombres triangulaires sont des nombres qui peuvent être représentés sous la forme d'une grille triangulaire équilatérale. Le nombre de points dans une ligne est toujours égal au numéro de ligne, c'est-à-dire que la première ligne contiendra 1 point, la deuxième ligne contiendra 2 points, et ainsi de suite. Plusieurs nombres triangulaires sont : 1, 3, 6, 10, 15…. Dérivons maintenant la formule du nième nombre triangulaire -
Nous savons que la nième ligne d'un nombre triangulaire contient n points, le nombre triangulaire peut donc être exprimé comme la somme des points de chaque ligne. Nous savons également que le nième nombre trigonométrique a n lignes, donc le nième nombre trigonométrique peut être donné par la somme des n premiers nombres naturels.
Méthode 1 : (Méthode directe)
Dans cette méthode, nous allons exécuter une boucle et calculer la différence entre le nombre donné et le nième nombre trigonométrique, lorsque nous obtiendrons la différence >= 0, nous obtiendrons le numéro de case requis donc nous tronquerons la boucle. < /p>
Pour les nombres trigonométriques, nous continuerons d'ajouter n au (n-1)ème nombre trigonométrique existant pour calculer la valeur du nombre trigonométrique suivant.
Algorithme
Étape 1 - Initialisez la variable triangulaire_number à 0.
Étape 2 - Exécutez la boucle for et continuez à ajouter n pour chaque itération.
Étape 3 - Continuez à calculer la différence entre le numéro du triangle et le nombre donné "num".
Étape 4 - Lorsque nous obtenons la différence >=0, nous imprimerons n comme numéro de boîte souhaité.
Exemple
L'implémentation de cette méthode en C++ est la suivante -
#include <iostream> using namespace std; int main(){ int num = 1234; int triangular_number = 0; for (int n=1; triangular_number<=num; n++){ triangular_number = triangular_number + n; if((triangular_number-num)>=0){ cout<<"The smallest triangular number larger than "<<num<<" is "<<n; return 0; } } }
Sortie
The smallest triangular number larger than 1234 is 50
Méthode 2 : Méthode basée sur une formule
Dans cette méthode, nous générons d'abord une formule générale pour calculer le nombre requis, puis appliquons directement la formule pour obtenir le plus petit nombre de triangles qui est seulement supérieur au nombre donné.
Le numéro triangulaire du nième numéro de case est donné par -
Triangular number = (n*(n+1))/2
Obtenez le plus petit numéro de case "n" tel que le nombre de triangles >= num.
i.e. (n*(n+1))/2 >= num
Cela signifie que nous devons résoudre -
n<sup>2</sup> + n – 2*num >= 0
En utilisant cette équation, nous obtenons
n = ceil( (sqrt(8*num+1)-1)/2 )
Exemple
Le code de cette méthode est donné ci-dessous -
#include<bits/stdc++.h> using namespace std; int boxnum(int num){ return ceil( ( sqrt( 8*num + 1 ) -1 ) / 2 ) ; } int main(){ int num = 1234 ; cout << "The smallest triangular number larger than "<<num<<" is "<<boxnum(num); return 0; }
Sortie
The smallest triangular number larger than 1234 is 50
Complexité temporelle de cette méthode - O(logn)
Complexité spatiale - O(1) puisque nous n'utilisons que de l'espace supplémentaire constant.
Dans cet article, nous avons discuté de deux méthodes différentes pour trouver le plus petit nombre de triangles qui est seulement supérieur à un nombre "num" donné. La première méthode calcule simplement les nombres trigonométriques en exécutant une boucle et en ajoutant n pour chaque itération. Nous avons également calculé la différence entre le nombre donné et le nombre trigonométrique. Dans la deuxième approche, nous générons une formule mathématique pour calculer le résultat souhaité.
Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Outils d'IA chauds

Undresser.AI Undress
Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover
Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool
Images de déshabillage gratuites

Clothoff.io
Dissolvant de vêtements AI

AI Hentai Generator
Générez AI Hentai gratuitement.

Article chaud

Outils chauds

Bloc-notes++7.3.1
Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise
Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1
Puissant environnement de développement intégré PHP

Dreamweaver CS6
Outils de développement Web visuel

SublimeText3 version Mac
Logiciel d'édition de code au niveau de Dieu (SublimeText3)

C Structure des données du langage: La représentation des données de l'arborescence et du graphique est une structure de données hiérarchique composée de nœuds. Chaque nœud contient un élément de données et un pointeur vers ses nœuds enfants. L'arbre binaire est un type spécial d'arbre. Chaque nœud a au plus deux nœuds enfants. Les données représentent StrustReenode {intdata; structTreenode * gauche; structureReode * droite;}; L'opération crée une arborescence d'arborescence arborescence (prédécision, ordre dans l'ordre et ordre ultérieur) Le nœud d'insertion de l'arborescence des arbres de recherche de nœud Graph est une collection de structures de données, où les éléments sont des sommets, et ils peuvent être connectés ensemble via des bords avec des données droites ou peu nombreuses représentant des voisins.

La vérité sur les problèmes de fonctionnement des fichiers: l'ouverture des fichiers a échoué: les autorisations insuffisantes, les mauvais chemins de mauvais et les fichiers occupés. L'écriture de données a échoué: le tampon est plein, le fichier n'est pas écrivatif et l'espace disque est insuffisant. Autres FAQ: traversée de fichiers lents, encodage de fichiers texte incorrect et erreurs de lecture de fichiers binaires.

Le calcul de C35 est essentiellement des mathématiques combinatoires, représentant le nombre de combinaisons sélectionnées parmi 3 des 5 éléments. La formule de calcul est C53 = 5! / (3! * 2!), Qui peut être directement calculé par des boucles pour améliorer l'efficacité et éviter le débordement. De plus, la compréhension de la nature des combinaisons et la maîtrise des méthodes de calcul efficaces est cruciale pour résoudre de nombreux problèmes dans les domaines des statistiques de probabilité, de la cryptographie, de la conception d'algorithmes, etc.

Les fonctions de langue C sont la base de la modularisation du code et de la construction de programmes. Ils se composent de déclarations (en-têtes de fonction) et de définitions (corps de fonction). Le langage C utilise des valeurs pour transmettre les paramètres par défaut, mais les variables externes peuvent également être modifiées à l'aide d'adresse Pass. Les fonctions peuvent avoir ou ne pas avoir de valeur de retour et le type de valeur de retour doit être cohérent avec la déclaration. La dénomination de la fonction doit être claire et facile à comprendre, en utilisant un chameau ou une nomenclature de soulignement. Suivez le principe de responsabilité unique et gardez la simplicité de la fonction pour améliorer la maintenabilité et la lisibilité.

La définition du nom de fonction du langage C comprend: Type de valeur de retour, nom de fonction, liste de paramètres et corps de fonction. Les noms de fonction doivent être clairs, concis et unifiés dans le style pour éviter les conflits avec les mots clés. Les noms de fonction ont des lunettes et peuvent être utilisés après la déclaration. Les pointeurs de fonction permettent de passer des fonctions ou d'attribuer des arguments. Les erreurs communes incluent les conflits de dénomination, l'inadéquation des types de paramètres et les fonctions non déclarées. L'optimisation des performances se concentre sur la conception et la mise en œuvre des fonctions, tandis que le code clair et facile à lire est crucial.

Les fonctions de langue C sont des blocs de code réutilisables. Ils reçoivent des entrées, effectuent des opérations et renvoient les résultats, ce qui améliore modulairement la réutilisabilité et réduit la complexité. Le mécanisme interne de la fonction comprend le passage des paramètres, l'exécution de la fonction et les valeurs de retour. L'ensemble du processus implique une optimisation telle que la fonction en ligne. Une bonne fonction est écrite en suivant le principe de responsabilité unique, un petit nombre de paramètres, des spécifications de dénomination et une gestion des erreurs. Les pointeurs combinés avec des fonctions peuvent atteindre des fonctions plus puissantes, telles que la modification des valeurs de variables externes. Les pointeurs de fonctions passent les fonctions comme des paramètres ou des adresses de magasin, et sont utilisées pour implémenter les appels dynamiques aux fonctions. Comprendre les fonctionnalités et les techniques des fonctions est la clé pour écrire des programmes C efficaces, maintenables et faciles à comprendre.

STD :: Unique supprime les éléments en double adjacents dans le conteneur et les déplace jusqu'à la fin, renvoyant un itérateur pointant vers le premier élément en double. STD :: Distance calcule la distance entre deux itérateurs, c'est-à-dire le nombre d'éléments auxquels ils pointent. Ces deux fonctions sont utiles pour optimiser le code et améliorer l'efficacité, mais il y a aussi quelques pièges à prêter attention, tels que: std :: unique traite uniquement des éléments en double adjacents. STD :: La distance est moins efficace lorsqu'il s'agit de transacteurs d'accès non aléatoires. En maîtrisant ces fonctionnalités et les meilleures pratiques, vous pouvez utiliser pleinement la puissance de ces deux fonctions.

C Guide de programmation multithreading Language: Création de threads: Utilisez la fonction PTHREAD_CREATE () pour spécifier l'ID de thread, les propriétés et les fonctions de thread. Synchronisation des threads: empêchez la concurrence des données via des mutex, des sémaphores et des variables conditionnelles. Cas pratique: utilisez le multi-lancement pour calculer le numéro Fibonacci, attribuer des tâches à plusieurs threads et synchroniser les résultats. Dépannage: résoudre des problèmes tels que les accidents de programme, les réponses d'arrêt de fil et les goulots d'étranglement des performances.
