


Tirer parti de la technologie Celery Redis Django pour un traitement de tâches asynchrone évolutif
Utilisation de la technologie Celery Redis Django pour réaliser un traitement de tâches asynchrones évolutif
Introduction :
Dans les applications Web modernes, le traitement de tâches asynchrones est devenu une exigence importante. Étant donné que certaines tâches peuvent prendre du temps ou doivent s'exécuter en arrière-plan, l'utilisation de tâches asynchrones peut améliorer les performances et l'expérience utilisateur de votre application. Afin d'obtenir un traitement de tâches asynchrone évolutif, nous pouvons combiner les technologies Celery, Redis et Django, ce qui permettra à nos applications d'avoir la capacité d'évoluer horizontalement face à un traitement de tâches à grande échelle. Cet article expliquera comment implémenter un système de traitement de tâches asynchrone évolutif à l'aide des technologies Celery, Redis et Django, et fournira des exemples de code spécifiques.
1. Installez et configurez Celery, Redis et Django
- Installez Celery :
Tout d'abord, nous devons installer la bibliothèque Celery. La bibliothèque Celery peut être installée en exécutant la commande suivante :
pip install celery
- Installer Redis :
Ensuite, nous devons installer Redis en tant que courtier de messages. Redis peut être installé en exécutant la commande suivante :
pip install redis
- Installer Django :
Ensuite, nous devons installer le framework Django. Django peut être installé en exécutant la commande suivante :
pip install django
- Configurer Celery :
Dans le fichier settings.py du projet Django, ajoutez la configuration Celery suivante :
CELERY_BROKER_URL = 'redis://localhost:6379/0' CELERY_RESULT_BACKEND = 'redis://localhost:6379/0'
- Créez une instance de Celery :
Dans le __init__ du fichier .py du projet Django, ajoutez le code suivant :
from celery import Celery app = Celery('your_app_name') app.config_from_object('django.conf:settings', namespace='CELERY') app.autodiscover_tasks()
2. Écrivez le code de la tâche asynchrone
- Créez le fichier tâches.py :
Dans le répertoire racine du projet Django, créez un fichier nommé tâches.py. - Écriture de tâches asynchrones :
Dans tâches.py, nous pouvons définir une tâche asynchrone. Par exemple, nous écrivons une tâche asynchrone simple pour démontrer le processus de traitement des tâches asynchrones via Celery :
from celery import shared_task from time import sleep @shared_task def send_email(): sleep(5) # 休眠5秒来模拟一个耗时的任务 # 在此处编写发送邮件的代码 print("邮件发送成功!")
3. Démarrez Celery Worker et Beat
- Démarrez Celery Worker :
Dans la ligne de commande, accédez au répertoire racine de le projet Django et exécutez la commande suivante pour démarrer Celery Worker :
celery -A your_app_name worker --loglevel=info
- Démarrer Celery Beat :
Dans la ligne de commande, accédez au répertoire racine du projet Django et exécutez la commande suivante pour démarrer Celery Beat (pour exécuter tâches périodiquement) :
celery -A your_app_name beat --loglevel=info
4. Appeler des tâches asynchrones dans les vues Django
- Importer des tâches asynchrones dans les vues Django :
Partout où une tâche asynchrone doit être appelée, nous devons importer la tâche. Par exemple, dans le fichier vues.py, vous pouvez ajouter l'instruction d'importation suivante :
from your_app_name.tasks import send_email
- Appeler une tâche asynchrone :
Lorsque vous devez appeler une tâche asynchrone, utilisez la méthode .delay() pour appeler la tâche. Par exemple, dans une fonction de vue Django, nous pouvons exécuter le code suivant pour appeler la tâche send_email :
def some_view(request): # 其他代码... send_email.delay() # 其他代码...
Grâce aux étapes ci-dessus, nous avons implémenté un système de traitement de tâches asynchrone évolutif basé sur Celery, Redis et Django. Nous utilisons Celery et Redis comme courtiers de messages et stockage des résultats, et utilisons Django pour gérer et planifier des tâches asynchrones. De cette façon, notre application peut gérer un grand nombre de tâches asynchrones et a la capacité d’évoluer horizontalement.
Conclusion :
En utilisant les technologies Celery, Redis et Django, nous pouvons facilement implémenter un système de traitement de tâches asynchrone évolutif. Grâce à une configuration et une planification appropriées, notre application peut gérer efficacement un grand nombre de tâches asynchrones, améliorant ainsi l'expérience utilisateur et les performances de l'application. Dans le même temps, nous pouvons utiliser des outils fiables tels que Celery et Redis pour rendre notre système stable et fiable face au traitement de tâches à grande échelle.
Lien de référence :
- https://docs.celeryproject.org/en/stable/index.html
- https://realpython.com/asynchronous-tasks-with-django-and-celery/
Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Outils d'IA chauds

Undresser.AI Undress
Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover
Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool
Images de déshabillage gratuites

Clothoff.io
Dissolvant de vêtements AI

Video Face Swap
Échangez les visages dans n'importe quelle vidéo sans effort grâce à notre outil d'échange de visage AI entièrement gratuit !

Article chaud

Outils chauds

Bloc-notes++7.3.1
Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise
Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1
Puissant environnement de développement intégré PHP

Dreamweaver CS6
Outils de développement Web visuel

SublimeText3 version Mac
Logiciel d'édition de code au niveau de Dieu (SublimeText3)

Le mode Redis Cluster déploie les instances Redis sur plusieurs serveurs grâce à la rupture, à l'amélioration de l'évolutivité et de la disponibilité. Les étapes de construction sont les suivantes: Créez des instances de redis étranges avec différents ports; Créer 3 instances Sentinel, Moniteur Redis Instances et basculement; Configurer les fichiers de configuration Sentinel, ajouter des informations d'instance Redis de surveillance et des paramètres de basculement; Configurer les fichiers de configuration d'instance Redis, activer le mode de cluster et spécifier le chemin du fichier d'informations de cluster; Créer un fichier nœuds.conf, contenant des informations de chaque instance redis; Démarrez le cluster, exécutez la commande CREATE pour créer un cluster et spécifiez le nombre de répliques; Connectez-vous au cluster pour exécuter la commande d'informations de cluster pour vérifier l'état du cluster; faire

Comment effacer les données Redis: utilisez la commande flushall pour effacer toutes les valeurs de clé. Utilisez la commande flushdb pour effacer la valeur clé de la base de données actuellement sélectionnée. Utilisez SELECT pour commuter les bases de données, puis utilisez FlushDB pour effacer plusieurs bases de données. Utilisez la commande del pour supprimer une clé spécifique. Utilisez l'outil Redis-CLI pour effacer les données.

Pour lire une file d'attente à partir de Redis, vous devez obtenir le nom de la file d'attente, lire les éléments à l'aide de la commande LPOP et traiter la file d'attente vide. Les étapes spécifiques sont les suivantes: Obtenez le nom de la file d'attente: Nommez-le avec le préfixe de "Fitre:" tel que "Fitre: My-Quyue". Utilisez la commande LPOP: éjectez l'élément de la tête de la file d'attente et renvoyez sa valeur, telle que la file d'attente LPOP: My-Queue. Traitement des files d'attente vides: si la file d'attente est vide, LPOP renvoie NIL et vous pouvez vérifier si la file d'attente existe avant de lire l'élément.

L'utilisation de la directive Redis nécessite les étapes suivantes: Ouvrez le client Redis. Entrez la commande (Verbe Key Value). Fournit les paramètres requis (varie de l'instruction à l'instruction). Appuyez sur Entrée pour exécuter la commande. Redis renvoie une réponse indiquant le résultat de l'opération (généralement OK ou -err).

L'utilisation des opérations Redis pour verrouiller nécessite l'obtention du verrouillage via la commande setnx, puis en utilisant la commande Expire pour définir le temps d'expiration. Les étapes spécifiques sont les suivantes: (1) Utilisez la commande setnx pour essayer de définir une paire de valeurs de clé; (2) Utilisez la commande Expire pour définir le temps d'expiration du verrou; (3) Utilisez la commande del pour supprimer le verrouillage lorsque le verrouillage n'est plus nécessaire.

La meilleure façon de comprendre le code source redis est d'aller étape par étape: familiarisez-vous avec les bases de Redis. Sélectionnez un module ou une fonction spécifique comme point de départ. Commencez par le point d'entrée du module ou de la fonction et affichez le code ligne par ligne. Affichez le code via la chaîne d'appel de fonction. Familiez les structures de données sous-jacentes utilisées par Redis. Identifiez l'algorithme utilisé par Redis.

Les causes de la perte de données redis incluent les défaillances de mémoire, les pannes de courant, les erreurs humaines et les défaillances matérielles. Les solutions sont: 1. Stockez les données sur le disque avec RDB ou AOF Persistance; 2. Copiez sur plusieurs serveurs pour une haute disponibilité; 3. Ha avec Redis Sentinel ou Redis Cluster; 4. Créez des instantanés pour sauvegarder les données; 5. Mettre en œuvre les meilleures pratiques telles que la persistance, la réplication, les instantanés, la surveillance et les mesures de sécurité.

Utilisez l'outil de ligne de commande redis (Redis-CLI) pour gérer et utiliser Redis via les étapes suivantes: Connectez-vous au serveur, spécifiez l'adresse et le port. Envoyez des commandes au serveur à l'aide du nom et des paramètres de commande. Utilisez la commande d'aide pour afficher les informations d'aide pour une commande spécifique. Utilisez la commande QUIT pour quitter l'outil de ligne de commande.
