


Comment utiliser Python pour le NLP pour traiter des fichiers PDF contenant des abréviations ?
Comment traiter des fichiers PDF contenant des abréviations à l'aide de Python pour le NLP
Dans le traitement du langage naturel (NLP), le traitement des fichiers PDF contenant des abréviations est un défi courant. Les abréviations apparaissent fréquemment dans les textes et peuvent facilement entraîner des difficultés de compréhension et d’analyse du texte. Cet article expliquera comment utiliser Python pour le traitement NLP pour résoudre ce problème et joindra des exemples de code spécifiques.
-
Installez les bibliothèques Python requises
Tout d'abord, nous devons installer certaines bibliothèques Python couramment utilisées, notammentPyPDF2
etnltk
. Ces bibliothèques peuvent être installées dans le terminal à l'aide de la commande suivante :PyPDF2
和nltk
。可以使用以下命令在终端中安装这些库:pip install PyPDF2 pip install nltk
Copier après la connexion 导入所需的库
在Python脚本中,我们需要导入所需的库和模块:import PyPDF2 import re from nltk.tokenize import word_tokenize from nltk.corpus import stopwords
Copier après la connexion读取PDF文件
使用PyPDF2
库,我们可以很容易地读取PDF文件的内容:def extract_text_from_pdf(file_path): with open(file_path, 'rb') as file: pdf_reader = PyPDF2.PdfFileReader(file) num_pages = pdf_reader.numPages text = '' for page_num in range(num_pages): page = pdf_reader.getPage(page_num) text += page.extractText() return text
Copier après la connexion清洗文本
接下来,我们需要清洗从PDF文件中提取出的文本。我们将使用正则表达式去掉非字母字符,并将文本转换为小写:def clean_text(text): cleaned_text = re.sub('[^a-zA-Z]', ' ', text) cleaned_text = cleaned_text.lower() return cleaned_text
Copier après la connexion分词和去除停用词
为了进行进一步的NLP处理,我们需要对文本进行分词,并去除停用词(常见但不具实际含义的词语):def tokenize_and_remove_stopwords(text): stop_words = set(stopwords.words('english')) tokens = word_tokenize(text) tokens = [token for token in tokens if token not in stop_words] return tokens
Copier après la connexion处理缩写词
现在我们可以添加一些函数来处理缩写词。我们可以使用一个包含常见缩写词和对应全称的字典,例如:abbreviations = { 'NLP': 'Natural Language Processing', 'PDF': 'Portable Document Format', 'AI': 'Artificial Intelligence', # 其他缩写词 }
Copier après la connexion然后,我们可以迭代文本中的每个单词,并将缩写词替换为全称:
def replace_abbreviations(text, abbreviations): words = text.split() for idx, word in enumerate(words): if word in abbreviations: words[idx] = abbreviations[word] return ' '.join(words)
Copier après la connexion整合所有步骤
最后,我们可以整合上述所有步骤,写一个主函数来调用这些函数并处理PDF文件:def process_pdf_with_abbreviations(file_path): text = extract_text_from_pdf(file_path) cleaned_text = clean_text(text) tokens = tokenize_and_remove_stopwords(cleaned_text) processed_text = replace_abbreviations(' '.join(tokens), abbreviations) return processed_text
Copier après la connexion示例使用
以下是如何调用上述函数来处理PDF文件的示例代码:file_path = 'example.pdf' processed_text = process_pdf_with_abbreviations(file_path) print(processed_text)
Copier après la connexion将
example.pdf
rrreee
Dans le script Python, nous devons importer les bibliothèques et modules requis :
rrreee🎜🎜🎜Lire les fichiers PDF🎜UtiliserPyPDF2
, nous pouvons facilement lire le contenu des fichiers PDF : 🎜rrreee🎜🎜🎜Texte propre🎜Ensuite, nous devons nettoyer le texte extrait du fichier PDF. Nous utiliserons des expressions régulières pour supprimer les caractères non alphabétiques et convertir le texte en minuscules : 🎜rrreee🎜🎜🎜Tokenisation et suppression des mots vides🎜Pour un traitement PNL ultérieur, nous devons tokeniser le texte et supprimer les mots vides (mots courants qui n'ont pas signification réelle) : 🎜rrreee🎜🎜🎜Gestion des abréviations🎜Nous pouvons maintenant ajouter quelques fonctions pour gérer les abréviations. Nous pouvons utiliser un dictionnaire contenant les abréviations courantes et leurs noms complets correspondants, par exemple : 🎜rrreee🎜 Ensuite, nous pouvons parcourir chaque mot du texte et remplacer les abréviations par leurs noms complets : 🎜rrreee🎜🎜🎜 Rassembler toutes les étapes 🎜Enfin, nous pouvons intégrer toutes les étapes ci-dessus et écrire une fonction principale pour appeler ces fonctions et traiter les fichiers PDF : 🎜rrreee🎜🎜🎜Exemple d'utilisation🎜Voici un exemple de code sur la façon d'appeler les fonctions ci-dessus pour traiter les fichiers PDF : 🎜 rrreee🎜 exemple remplacera .pdf
par le chemin réel du fichier PDF. 🎜🎜🎜🎜En utilisant la technologie Python et NLP, nous pouvons facilement traiter des fichiers PDF contenant des abréviations. Des exemples de code montrent comment extraire du texte, nettoyer du texte, segmenter des mots, supprimer des mots vides et traiter des abréviations. En fonction des besoins réels, vous pouvez encore améliorer le code et ajouter d'autres fonctions. Je vous souhaite du succès dans la gestion des tâches PNL ! 🎜Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Outils d'IA chauds

Undresser.AI Undress
Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover
Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool
Images de déshabillage gratuites

Clothoff.io
Dissolvant de vêtements AI

Video Face Swap
Échangez les visages dans n'importe quelle vidéo sans effort grâce à notre outil d'échange de visage AI entièrement gratuit !

Article chaud

Outils chauds

Bloc-notes++7.3.1
Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise
Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1
Puissant environnement de développement intégré PHP

Dreamweaver CS6
Outils de développement Web visuel

SublimeText3 version Mac
Logiciel d'édition de code au niveau de Dieu (SublimeText3)

Sujets chauds

PHP est principalement la programmation procédurale, mais prend également en charge la programmation orientée objet (POO); Python prend en charge une variété de paradigmes, y compris la POO, la programmation fonctionnelle et procédurale. PHP convient au développement Web, et Python convient à une variété d'applications telles que l'analyse des données et l'apprentissage automatique.

PHP convient au développement Web et au prototypage rapide, et Python convient à la science des données et à l'apprentissage automatique. 1.Php est utilisé pour le développement Web dynamique, avec une syntaxe simple et adapté pour un développement rapide. 2. Python a une syntaxe concise, convient à plusieurs champs et a un écosystème de bibliothèque solide.

Python convient plus aux débutants, avec une courbe d'apprentissage en douceur et une syntaxe concise; JavaScript convient au développement frontal, avec une courbe d'apprentissage abrupte et une syntaxe flexible. 1. La syntaxe Python est intuitive et adaptée à la science des données et au développement back-end. 2. JavaScript est flexible et largement utilisé dans la programmation frontale et côté serveur.

Dans VS Code, vous pouvez exécuter le programme dans le terminal via les étapes suivantes: Préparez le code et ouvrez le terminal intégré pour vous assurer que le répertoire de code est cohérent avec le répertoire de travail du terminal. Sélectionnez la commande Run en fonction du langage de programmation (tel que Python de Python your_file_name.py) pour vérifier s'il s'exécute avec succès et résoudre les erreurs. Utilisez le débogueur pour améliorer l'efficacité du débogage.

VS Code peut fonctionner sur Windows 8, mais l'expérience peut ne pas être excellente. Assurez-vous d'abord que le système a été mis à jour sur le dernier correctif, puis téléchargez le package d'installation VS Code qui correspond à l'architecture du système et l'installez comme invité. Après l'installation, sachez que certaines extensions peuvent être incompatibles avec Windows 8 et doivent rechercher des extensions alternatives ou utiliser de nouveaux systèmes Windows dans une machine virtuelle. Installez les extensions nécessaires pour vérifier si elles fonctionnent correctement. Bien que le code VS soit possible sur Windows 8, il est recommandé de passer à un système Windows plus récent pour une meilleure expérience de développement et une meilleure sécurité.

Les extensions de code vs posent des risques malveillants, tels que la cachette de code malveillant, l'exploitation des vulnérabilités et la masturbation comme des extensions légitimes. Les méthodes pour identifier les extensions malveillantes comprennent: la vérification des éditeurs, la lecture des commentaires, la vérification du code et l'installation avec prudence. Les mesures de sécurité comprennent également: la sensibilisation à la sécurité, les bonnes habitudes, les mises à jour régulières et les logiciels antivirus.

VS Code peut être utilisé pour écrire Python et fournit de nombreuses fonctionnalités qui en font un outil idéal pour développer des applications Python. Il permet aux utilisateurs de: installer des extensions Python pour obtenir des fonctions telles que la réalisation du code, la mise en évidence de la syntaxe et le débogage. Utilisez le débogueur pour suivre le code étape par étape, trouver et corriger les erreurs. Intégrez Git pour le contrôle de version. Utilisez des outils de mise en forme de code pour maintenir la cohérence du code. Utilisez l'outil de liaison pour repérer les problèmes potentiels à l'avance.

PHP est originaire en 1994 et a été développé par Rasmuslerdorf. Il a été utilisé à l'origine pour suivre les visiteurs du site Web et a progressivement évolué en un langage de script côté serveur et a été largement utilisé dans le développement Web. Python a été développé par Guidovan Rossum à la fin des années 1980 et a été publié pour la première fois en 1991. Il met l'accent sur la lisibilité et la simplicité du code, et convient à l'informatique scientifique, à l'analyse des données et à d'autres domaines.
