Maison développement back-end Tutoriel Python Guide technique et analyse étape par étape des graphiques de dessin en Python

Guide technique et analyse étape par étape des graphiques de dessin en Python

Sep 27, 2023 pm 02:25 PM
technologie de dessin python Étapes de dessin du graphique Analyse du guide technique

Guide technique et analyse étape par étape des graphiques de dessin en Python

Guide technique et analyse étape par étape des graphiques de dessin en Python

Introduction :

En termes de visualisation de données, les graphiques sont un outil important qui peut nous aider à comprendre les informations derrière les données de manière plus intuitive. En tant que langage de programmation puissant largement utilisé dans le calcul scientifique et l’analyse de données, Python fournit une bibliothèque riche et flexible pour dessiner différents types de graphiques. Cet article vous présentera le guide technique et l'analyse étape par étape des graphiques de dessin en Python, et fournira des exemples de code spécifiques pour vous aider à mieux maîtriser les compétences associées.

Étape 1 : Installer les bibliothèques dépendantes

Avant de commencer à dessiner des graphiques, nous devons installer certaines bibliothèques de visualisation de données Python. Les bibliothèques couramment utilisées incluent matplotlib, seaborn, plotly, etc., qui offrent une multitude de types de graphiques et d'options de personnalisation. Ces bibliothèques peuvent être facilement installées via la commande pip, par exemple :

pip install matplotlib
pip install seaborn
pip install plotly
Copier après la connexion

Étape 2 : Préparer les données

Avant de commencer à dessiner le graphique, nous devons préparer les données à utiliser. Les données peuvent provenir de n'importe quelle source telle que des fichiers, des bases de données ou des API, mais pour plus de simplicité, nous utiliserons ici l'exemple d'ensemble de données intégré.

import seaborn as sns
iris = sns.load_dataset('iris')
Copier après la connexion

Le code ci-dessus utilise la fonction load_dataset de la bibliothèque seaborn pour charger un ensemble de données classique sur la fleur d'iris. L'ensemble de données contient les quatre caractéristiques de la fleur d'iris (longueur des sépales, largeur des sépales, longueur des pétales et largeur des pétales) et les trois. catégories auxquelles il appartient (Setosa, Versicolor et Virginica).

Étape 3 : Dessinez un graphique

Plusieurs types de graphiques courants seront présentés ci-dessous et des exemples de code correspondants seront fournis.

  1. Line Plot

Les graphiques linéaires sont généralement utilisés pour montrer la tendance des changements de données au fil du temps. L'exemple de code suivant trace la longueur des sépales en fonction de l'index dans l'ensemble de données de l'iris.

import matplotlib.pyplot as plt

plt.plot(iris.index, iris['sepal_length'])
plt.xlabel('Index')
plt.ylabel('Sepal Length')
plt.title('Line Plot of Sepal Length')
plt.show()
Copier après la connexion
  1. Scatter Plot

Les nuages ​​de points sont généralement utilisés pour montrer la relation entre deux variables. L'exemple de code suivant trace la relation entre la longueur et la largeur des sépales dans un ensemble de données d'iris.

plt.scatter(iris['sepal_length'], iris['sepal_width'])
plt.xlabel('Sepal Length')
plt.ylabel('Sepal Width')
plt.title('Scatter Plot of Sepal Length and Width')
plt.show()
Copier après la connexion
  1. Bar Plot

Les graphiques à barres sont souvent utilisés pour comparer les valeurs entre différentes catégories. L'exemple de code suivant trace la longueur moyenne des pétales pour trois catégories de l'ensemble de données iris.

plt.bar(iris['species'], iris['petal_length'].groupby(iris['species']).mean())
plt.xlabel('Species')
plt.ylabel('Mean Petal Length')
plt.title('Bar Plot of Mean Petal Length by Species')
plt.show()
Copier après la connexion
  1. Box Plot

Les box plots sont souvent utilisés pour afficher la distribution et les valeurs aberrantes des données. L’exemple de code suivant trace un boxplot de quatre entités dans l’ensemble de données iris.

plt.boxplot([iris['sepal_length'], iris['sepal_width'], iris['petal_length'], iris['petal_width']])
plt.xticks([1, 2, 3, 4], ['Sepal Length', 'Sepal Width', 'Petal Length', 'Petal Width'])
plt.ylabel('Value')
plt.title('Box Plot of Iris Features')
plt.show()
Copier après la connexion

Étape 4 : Personnaliser le graphique

En plus des types de graphiques de base, nous pouvons également embellir le graphique grâce aux options de personnalisation. Par exemple, nous pouvons modifier des attributs tels que la couleur, le type de ligne, la police, etc.

plt.plot(iris.index, iris['sepal_length'], color='red', linestyle='--', linewidth=2)
plt.xlabel('Index')
plt.ylabel('Sepal Length')
plt.title('Line Plot of Sepal Length')
plt.show()
Copier après la connexion

L'exemple de code ci-dessus définit la couleur du graphique linéaire sur rouge, le type de ligne sur ligne pointillée et la largeur de ligne sur 2.

Conclusion :

Cet article présente le guide technique et l'analyse des étapes du dessin de graphiques en Python, et fournit des exemples de code spécifiques pour les graphiques linéaires, les nuages ​​de points, les graphiques à barres et les boîtes à moustaches. Bien que ces exemples ne soient que la pointe de l'iceberg lorsqu'il s'agit de créer des graphiques en Python, une fois que vous maîtrisez ces compétences de base, vous pouvez explorer davantage des types et des fonctions de graphiques plus complexes pour mieux les appliquer aux tâches d'analyse et de visualisation de données. J'espère que cet article vous sera utile dans le dessin de graphiques Python !

Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Déclaration de ce site Web
Le contenu de cet article est volontairement contribué par les internautes et les droits d'auteur appartiennent à l'auteur original. Ce site n'assume aucune responsabilité légale correspondante. Si vous trouvez un contenu suspecté de plagiat ou de contrefaçon, veuillez contacter admin@php.cn

Outils d'IA chauds

Undresser.AI Undress

Undresser.AI Undress

Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover

AI Clothes Remover

Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool

Undress AI Tool

Images de déshabillage gratuites

Clothoff.io

Clothoff.io

Dissolvant de vêtements AI

AI Hentai Generator

AI Hentai Generator

Générez AI Hentai gratuitement.

Article chaud

R.E.P.O. Crystals d'énergie expliqués et ce qu'ils font (cristal jaune)
3 Il y a quelques semaines By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Meilleurs paramètres graphiques
3 Il y a quelques semaines By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Comment réparer l'audio si vous n'entendez personne
3 Il y a quelques semaines By 尊渡假赌尊渡假赌尊渡假赌
WWE 2K25: Comment déverrouiller tout dans Myrise
4 Il y a quelques semaines By 尊渡假赌尊渡假赌尊渡假赌

Outils chauds

Bloc-notes++7.3.1

Bloc-notes++7.3.1

Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise

SublimeText3 version chinoise

Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1

Envoyer Studio 13.0.1

Puissant environnement de développement intégré PHP

Dreamweaver CS6

Dreamweaver CS6

Outils de développement Web visuel

SublimeText3 version Mac

SublimeText3 version Mac

Logiciel d'édition de code au niveau de Dieu (SublimeText3)

Comment résoudre le problème des autorisations rencontré lors de la visualisation de la version Python dans le terminal Linux? Comment résoudre le problème des autorisations rencontré lors de la visualisation de la version Python dans le terminal Linux? Apr 01, 2025 pm 05:09 PM

Solution aux problèmes d'autorisation Lors de la visualisation de la version Python dans Linux Terminal Lorsque vous essayez d'afficher la version Python dans Linux Terminal, entrez Python ...

Comment copier efficacement la colonne entière d'une dataframe dans une autre dataframe avec différentes structures dans Python? Comment copier efficacement la colonne entière d'une dataframe dans une autre dataframe avec différentes structures dans Python? Apr 01, 2025 pm 11:15 PM

Lorsque vous utilisez la bibliothèque Pandas de Python, comment copier des colonnes entières entre deux frames de données avec différentes structures est un problème courant. Supposons que nous ayons deux dats ...

Comment enseigner les bases de la programmation novice en informatique dans le projet et les méthodes axées sur les problèmes dans les 10 heures? Comment enseigner les bases de la programmation novice en informatique dans le projet et les méthodes axées sur les problèmes dans les 10 heures? Apr 02, 2025 am 07:18 AM

Comment enseigner les bases de la programmation novice en informatique dans les 10 heures? Si vous n'avez que 10 heures pour enseigner à l'informatique novice des connaissances en programmation, que choisissez-vous d'enseigner ...

Comment Uvicorn écoute-t-il en permanence les demandes HTTP sans servir_forever ()? Comment Uvicorn écoute-t-il en permanence les demandes HTTP sans servir_forever ()? Apr 01, 2025 pm 10:51 PM

Comment Uvicorn écoute-t-il en permanence les demandes HTTP? Uvicorn est un serveur Web léger basé sur ASGI. L'une de ses fonctions principales est d'écouter les demandes HTTP et de procéder ...

Comment créer dynamiquement un objet via une chaîne et appeler ses méthodes dans Python? Comment créer dynamiquement un objet via une chaîne et appeler ses méthodes dans Python? Apr 01, 2025 pm 11:18 PM

Dans Python, comment créer dynamiquement un objet via une chaîne et appeler ses méthodes? Il s'agit d'une exigence de programmation courante, surtout si elle doit être configurée ou exécutée ...

Quelles sont les bibliothèques Python populaires et leurs utilisations? Quelles sont les bibliothèques Python populaires et leurs utilisations? Mar 21, 2025 pm 06:46 PM

L'article traite des bibliothèques Python populaires comme Numpy, Pandas, Matplotlib, Scikit-Learn, Tensorflow, Django, Flask et Demandes, détaillant leurs utilisations dans le calcul scientifique, l'analyse des données, la visualisation, l'apprentissage automatique, le développement Web et H et H

Comment éviter d'être détecté par le navigateur lors de l'utilisation de Fiddler partout pour la lecture de l'homme au milieu? Comment éviter d'être détecté par le navigateur lors de l'utilisation de Fiddler partout pour la lecture de l'homme au milieu? Apr 02, 2025 am 07:15 AM

Comment éviter d'être détecté lors de l'utilisation de FiddlereVerywhere pour les lectures d'homme dans le milieu lorsque vous utilisez FiddlereVerywhere ...

See all articles