Maison développement back-end Golang Programmation simultanée efficace : utilisation de Go WaitGroup et des pools de coroutines

Programmation simultanée efficace : utilisation de Go WaitGroup et des pools de coroutines

Sep 28, 2023 pm 12:49 PM
go 并发编程 协程池 高效 waitgroup

高效并发编程:使用Go WaitGroup和协程池

Programmation simultanée efficace : utilisation de Go WaitGroup et Coroutine Pool

Introduction :
Dans les systèmes informatiques modernes, la programmation simultanée devient de plus en plus importante. La programmation simultanée peut maximiser l'utilisation des performances du processeur multicœur et améliorer l'efficacité de l'exécution du programme. Cependant, la programmation simultanée est également confrontée à des défis, tels que la gestion de la synchronisation et de la gestion des tâches simultanées. Dans cet article, nous présenterons comment utiliser WaitGroup et le pool de coroutines dans le langage Go pour obtenir une programmation simultanée efficace et fournirons des exemples de code spécifiques.

1. Utilisation de WaitGroup : 
Le langage Go fournit un type WaitGroup très utile, qui peut être utilisé pour attendre qu'un groupe de coroutines termine son exécution. Voici un exemple simple qui montre comment utiliser WaitGroup pour réaliser la synchronisation de tâches simultanées :

package main

import (
    "fmt"
    "sync"
)

func worker(id int, wg *sync.WaitGroup) {
    defer wg.Done()

    fmt.Printf("Worker %d starting
", id)

    // 模拟耗时的任务
    for i := 0; i < 5; i++ {
        fmt.Printf("Worker %d: %d
", id, i)
    }

    fmt.Printf("Worker %d done
", id)
}

func main() {
    var wg sync.WaitGroup

    // 启动5个协程
    for i := 0; i < 5; i++ {
        wg.Add(1)
        go worker(i, &wg)
    }

    // 等待所有协程执行完毕
    wg.Wait()
}
Copier après la connexion

Dans le code ci-dessus, nous définissons une fonction de travail pour simuler des tâches chronophages. Nous informons le WaitGroup que la tâche a été terminée en passant un pointeur vers le WaitGroup. Dans la fonction principale, nous avons démarré 5 coroutines et notifié à WaitGroup d'augmenter le nombre de tâches en attente en appelant la méthode wg.Add(1). Enfin, nous appelons la méthode wg.Wait() pour bloquer la coroutine principale jusqu'à ce que toutes les tâches soient terminées. wg.Add(1)方法来通知WaitGroup等待的任务数量加一。最后,我们调用wg.Wait()方法来阻塞主协程,直到所有的任务都完成。

二、协程池的使用:
Go语言还提供了协程池的实现,用于限制并发的数量,防止同时运行太多的协程。协程池可以帮助我们平衡系统的资源,并避免资源浪费。下面是一个示例,展示了如何使用协程池来执行任务:

package main

import (
    "fmt"
    "sync"
)

type Pool struct {
    workers chan struct{}
    wg      sync.WaitGroup
}

func NewPool(size int) *Pool {
    return &Pool{
        workers: make(chan struct{}, size),
    }
}

func (p *Pool) AddTask(task func()) {
    p.workers <- struct{}{}
    p.wg.Add(1)

    go func() {
        task()
        <-p.workers
        p.wg.Done()
    }()
}

func (p *Pool) Wait() {
    p.wg.Wait()
}

func main() {
    pool := NewPool(3)

    // 添加10个任务到协程池
    for i := 0; i < 10; i++ {
        taskID := i
        pool.AddTask(func() {
            fmt.Printf("Task %d is running
", taskID)
        })
    }

    // 等待所有任务完成
    pool.Wait()
}
Copier après la connexion

在上述代码中,我们定义了一个Pool结构体,其中包含一个用于限制协程数量的workers通道和一个WaitGroup用于等待所有任务完成。我们通过调用p.workers <- struct{}{}往通道中写入一个空结构体,表示有一个协程正在执行任务;通过<-p.workers从通道中取出一个空结构体,表示一个协程执行完了任务。在AddTask方法中,我们将任务添加到协程池中,并在任务执行完成后从通道中取出一个空结构体。最后,调用pool.Wait()

2. L'utilisation du pool de coroutines :

Le langage Go fournit également la mise en œuvre du pool de coroutines, qui est utilisé pour limiter le nombre de simultanéités et empêcher trop de coroutines de s'exécuter en même temps. Le pool de coroutines peut nous aider à équilibrer les ressources du système et à éviter le gaspillage de ressources. Voici un exemple qui montre comment utiliser un pool de coroutines pour effectuer des tâches :
rrreee

Dans le code ci-dessus, nous définissons une structure Pool qui contient un canal de travail pour limiter le nombre de coroutines et un WaitGroup pour attendre toutes les tâches terminées. Nous écrivons une structure vide dans le canal en appelant p.workers <- struct{}{}, indiquant qu'une coroutine exécute la tâche en appelant <-p.workers Supprime une structure vide du canal, indiquant qu'une coroutine a terminé sa tâche. Dans la méthode AddTask, nous ajoutons la tâche au pool de coroutines et supprimons une structure vide du canal une fois l'exécution de la tâche terminée. Enfin, appelez la méthode pool.Wait() pour attendre que toutes les tâches soient terminées. 🎜🎜Conclusion : 🎜En utilisant WaitGroup et le pool de coroutines, nous pouvons facilement réaliser une programmation simultanée efficace. WaitGroup nous aide à synchroniser l'exécution des tâches simultanées, tandis que le pool de coroutines limite le nombre de simultanéités et améliore l'utilisation des ressources système. Dans les applications réelles, nous pouvons ajuster la taille du pool de coroutines en fonction des besoins pour utiliser pleinement les performances de l'ordinateur. 🎜

Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Déclaration de ce site Web
Le contenu de cet article est volontairement contribué par les internautes et les droits d'auteur appartiennent à l'auteur original. Ce site n'assume aucune responsabilité légale correspondante. Si vous trouvez un contenu suspecté de plagiat ou de contrefaçon, veuillez contacter admin@php.cn

Outils d'IA chauds

Undresser.AI Undress

Undresser.AI Undress

Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover

AI Clothes Remover

Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool

Undress AI Tool

Images de déshabillage gratuites

Clothoff.io

Clothoff.io

Dissolvant de vêtements AI

Video Face Swap

Video Face Swap

Échangez les visages dans n'importe quelle vidéo sans effort grâce à notre outil d'échange de visage AI entièrement gratuit !

Outils chauds

Bloc-notes++7.3.1

Bloc-notes++7.3.1

Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise

SublimeText3 version chinoise

Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1

Envoyer Studio 13.0.1

Puissant environnement de développement intégré PHP

Dreamweaver CS6

Dreamweaver CS6

Outils de développement Web visuel

SublimeText3 version Mac

SublimeText3 version Mac

Logiciel d'édition de code au niveau de Dieu (SublimeText3)

Conception sécurisée de structures de données en programmation simultanée C++ ? Conception sécurisée de structures de données en programmation simultanée C++ ? Jun 05, 2024 am 11:00 AM

Dans la programmation simultanée C++, la conception sécurisée des structures de données est cruciale : Section critique : utilisez un verrou mutex pour créer un bloc de code qui permet à un seul thread de s'exécuter en même temps. Verrouillage en lecture-écriture : permet à plusieurs threads de lire en même temps, mais à un seul thread d'écrire en même temps. Structures de données sans verrouillage : utilisez des opérations atomiques pour assurer la sécurité de la concurrence sans verrous. Cas pratique : File d'attente thread-safe : utilisez les sections critiques pour protéger les opérations de file d'attente et assurer la sécurité des threads.

Comment envoyer des messages Go WebSocket ? Comment envoyer des messages Go WebSocket ? Jun 03, 2024 pm 04:53 PM

Dans Go, les messages WebSocket peuvent être envoyés à l'aide du package gorilla/websocket. Étapes spécifiques : Établissez une connexion WebSocket. Envoyer un message texte : appelez WriteMessage(websocket.TextMessage,[]byte("message")). Envoyez un message binaire : appelez WriteMessage(websocket.BinaryMessage,[]byte{1,2,3}).

Comment faire correspondre les horodatages à l'aide d'expressions régulières dans Go ? Comment faire correspondre les horodatages à l'aide d'expressions régulières dans Go ? Jun 02, 2024 am 09:00 AM

Dans Go, vous pouvez utiliser des expressions régulières pour faire correspondre les horodatages : compilez une chaîne d'expression régulière, telle que celle utilisée pour faire correspondre les horodatages ISO8601 : ^\d{4}-\d{2}-\d{2}T \d{ 2}:\d{2}:\d{2}(\.\d+)?(Z|[+-][0-9]{2}:[0-9]{2})$ . Utilisez la fonction regexp.MatchString pour vérifier si une chaîne correspond à une expression régulière.

La différence entre la langue Golang et Go La différence entre la langue Golang et Go May 31, 2024 pm 08:10 PM

Go et le langage Go sont des entités différentes avec des caractéristiques différentes. Go (également connu sous le nom de Golang) est connu pour sa concurrence, sa vitesse de compilation rapide, sa gestion de la mémoire et ses avantages multiplateformes. Les inconvénients du langage Go incluent un écosystème moins riche que les autres langages, une syntaxe plus stricte et un manque de typage dynamique.

Explication détaillée des primitives de synchronisation dans la programmation simultanée C++ Explication détaillée des primitives de synchronisation dans la programmation simultanée C++ May 31, 2024 pm 10:01 PM

Dans la programmation multithread C++, le rôle des primitives de synchronisation est de garantir l'exactitude de l'accès de plusieurs threads aux ressources partagées. Elle comprend : Mutex (Mutex) : protège les ressources partagées et empêche l'accès simultané. Variable de condition (ConditionVariable) : thread Attendre une réponse spécifique ; conditions à remplir avant de poursuivre l’exécution de l’opération atomique : s’assurer que l’opération s’exécute de manière ininterrompue.

Comment éviter les fuites de mémoire dans l'optimisation des performances techniques de Golang ? Comment éviter les fuites de mémoire dans l'optimisation des performances techniques de Golang ? Jun 04, 2024 pm 12:27 PM

Les fuites de mémoire peuvent entraîner une augmentation continue de la mémoire du programme Go en : fermant les ressources qui ne sont plus utilisées, telles que les fichiers, les connexions réseau et les connexions à la base de données. Utilisez des références faibles pour éviter les fuites de mémoire et ciblez les objets pour le garbage collection lorsqu'ils ne sont plus fortement référencés. En utilisant go coroutine, la mémoire de la pile de coroutines sera automatiquement libérée à la sortie pour éviter les fuites de mémoire.

Choses à noter lorsque les fonctions Golang reçoivent des paramètres de carte Choses à noter lorsque les fonctions Golang reçoivent des paramètres de carte Jun 04, 2024 am 10:31 AM

Lors du passage d'une carte à une fonction dans Go, une copie sera créée par défaut et les modifications apportées à la copie n'affecteront pas la carte d'origine. Si vous devez modifier la carte originale, vous pouvez la passer via un pointeur. Les cartes vides doivent être manipulées avec précaution, car ce sont techniquement des pointeurs nuls, et passer une carte vide à une fonction qui attend une carte non vide provoquera une erreur.

Comment utiliser le wrapper d'erreur de Golang ? Comment utiliser le wrapper d'erreur de Golang ? Jun 03, 2024 pm 04:08 PM

Dans Golang, les wrappers d'erreurs vous permettent de créer de nouvelles erreurs en ajoutant des informations contextuelles à l'erreur d'origine. Cela peut être utilisé pour unifier les types d'erreurs générées par différentes bibliothèques ou composants, simplifiant ainsi le débogage et la gestion des erreurs. Les étapes sont les suivantes : Utilisez la fonction error.Wrap pour envelopper les erreurs d'origine dans de nouvelles erreurs. La nouvelle erreur contient des informations contextuelles de l'erreur d'origine. Utilisez fmt.Printf pour générer des erreurs encapsulées, offrant ainsi plus de contexte et de possibilités d'action. Lors de la gestion de différents types d’erreurs, utilisez la fonction erreurs.Wrap pour unifier les types d’erreurs.

See all articles