


Problèmes de cohérence de style dans la technologie de transfert de style d'image
Les problèmes de cohérence de style dans la technologie de transfert de style d'image nécessitent des exemples de code spécifiques
Ces dernières années, la technologie de transfert de style d'image a fait d'énormes percées dans le domaine de la vision par ordinateur. En transférant le style d’une image à une autre, nous pouvons créer des effets artistiques époustouflants. Cependant, la cohérence du style est un problème important pour les techniques de transfert de style d’image.
La cohérence du style signifie que lorsque le style d'une image est transféré à une autre image, l'image de sortie doit être stylistiquement cohérente avec l'image d'entrée. Cela signifie que les caractéristiques telles que la couleur, la texture, la forme, etc. doivent être similaires à l'image d'entrée. Les algorithmes de transfert de style d'image existants ne parviennent souvent pas à maintenir complètement la cohérence du style, ce qui entraîne des différences évidentes entre l'image de sortie et l'image d'entrée dans certains aspects.
Afin de résoudre ce problème, les chercheurs ont proposé des méthodes pour améliorer la cohérence du style de la technologie de transfert de style d'image. Ci-dessous, je présenterai quelques méthodes couramment utilisées et donnerai des exemples de code correspondants.
- Fonction de perte de style
La fonction de perte de style est une méthode utilisée pour mesurer la similitude stylistique entre l'image de sortie et l'image d'entrée. Il mesure les différences de style en calculant la distance entre les représentations des caractéristiques de l'image de sortie et de l'image d'entrée au niveau de différentes couches de caractéristiques. Les méthodes de représentation de caractéristiques couramment utilisées incluent les caractéristiques de couche intermédiaire dans les réseaux de neurones convolutifs, telles que la sortie de couche convolutive dans les réseaux VGG.
Exemple de code :
import torch import torch.nn as nn import torchvision.models as models class StyleLoss(nn.Module): def __init__(self): super(StyleLoss, self).__init__() self.model = models.vgg19(pretrained=True).features[:23] self.layers = ['conv1_1', 'conv2_1', 'conv3_1', 'conv4_1'] def forward(self, input, target): input_features = self.model(input) target_features = self.model(target) loss = 0 for layer in self.layers: input_style = self.gram_matrix(input_features[layer]) target_style = self.gram_matrix(target_features[layer]) loss += torch.mean(torch.square(input_style - target_style)) return loss / len(self.layers) def gram_matrix(self, input): B, C, H, W = input.size() features = input.view(B * C, H * W) gram = torch.mm(features, features.t()) return gram / (B * C * H * W)
- Réseau de transfert de style
Le réseau de transfert de style est une méthode permettant d'obtenir une cohérence de style en définissant plusieurs fonctions de perte tout en optimisant la différence entre l'image d'entrée et l'image de sortie. En plus de la fonction de perte de style, vous pouvez également ajouter une fonction de perte de contenu et une fonction de perte de variation totale. La fonction de perte de contenu est utilisée pour maintenir la similarité du contenu entre l'image de sortie et l'image d'entrée, et la fonction de perte de variation totale est utilisée pour lisser l'image de sortie.
Exemple de code :
class StyleTransferNet(nn.Module): def __init__(self, style_weight, content_weight, tv_weight): super(StyleTransferNet, self).__init__() self.style_loss = StyleLoss() self.content_loss = nn.MSELoss() self.tv_loss = nn.L1Loss() self.style_weight = style_weight self.content_weight = content_weight self.tv_weight = tv_weight def forward(self, input, target): style_loss = self.style_loss(input, target) * self.style_weight content_loss = self.content_loss(input, target) * self.content_weight tv_loss = self.tv_loss(input, target) * self.tv_weight return style_loss + content_loss + tv_loss
En utilisant l'exemple de code ci-dessus, nous pouvons mieux maintenir la cohérence du style pendant le processus de transfert de style d'image. Lorsque nous ajustons les paramètres de poids, nous pouvons obtenir différents effets de transfert de style.
En résumé, la cohérence du style est un problème important dans la technologie de transfert de style d'image. En utilisant des méthodes telles que les fonctions de perte de style et les réseaux de transfert de style, nous pouvons améliorer la cohérence des styles des techniques de transfert de style d'image. À l’avenir, avec le développement du deep learning, on peut s’attendre à l’émergence d’algorithmes de transfert de styles d’images plus efficaces et plus précis.
Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Outils d'IA chauds

Undresser.AI Undress
Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover
Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool
Images de déshabillage gratuites

Clothoff.io
Dissolvant de vêtements AI

Video Face Swap
Échangez les visages dans n'importe quelle vidéo sans effort grâce à notre outil d'échange de visage AI entièrement gratuit !

Article chaud

Outils chauds

Bloc-notes++7.3.1
Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise
Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1
Puissant environnement de développement intégré PHP

Dreamweaver CS6
Outils de développement Web visuel

SublimeText3 version Mac
Logiciel d'édition de code au niveau de Dieu (SublimeText3)

Sujets chauds

Le premier article pilote et clé présente principalement plusieurs systèmes de coordonnées couramment utilisés dans la technologie de conduite autonome, et comment compléter la corrélation et la conversion entre eux, et enfin construire un modèle d'environnement unifié. L'objectif ici est de comprendre la conversion du véhicule en corps rigide de caméra (paramètres externes), la conversion de caméra en image (paramètres internes) et la conversion d'image en unité de pixel. La conversion de 3D en 2D aura une distorsion, une traduction, etc. Points clés : Le système de coordonnées du véhicule et le système de coordonnées du corps de la caméra doivent être réécrits : le système de coordonnées planes et le système de coordonnées des pixels Difficulté : la distorsion de l'image doit être prise en compte. La dé-distorsion et l'ajout de distorsion sont compensés sur le plan de l'image. 2. Introduction Il existe quatre systèmes de vision au total : système de coordonnées du plan de pixels (u, v), système de coordonnées d'image (x, y), système de coordonnées de caméra () et système de coordonnées mondiales (). Il existe une relation entre chaque système de coordonnées,

L'article de StableDiffusion3 est enfin là ! Ce modèle est sorti il y a deux semaines et utilise la même architecture DiT (DiffusionTransformer) que Sora. Il a fait beaucoup de bruit dès sa sortie. Par rapport à la version précédente, la qualité des images générées par StableDiffusion3 a été considérablement améliorée. Il prend désormais en charge les invites multithèmes, et l'effet d'écriture de texte a également été amélioré et les caractères tronqués n'apparaissent plus. StabilityAI a souligné que StableDiffusion3 est une série de modèles avec des tailles de paramètres allant de 800M à 8B. Cette plage de paramètres signifie que le modèle peut être exécuté directement sur de nombreux appareils portables, réduisant ainsi considérablement l'utilisation de l'IA.

La prédiction de trajectoire joue un rôle important dans la conduite autonome. La prédiction de trajectoire de conduite autonome fait référence à la prédiction de la trajectoire de conduite future du véhicule en analysant diverses données pendant le processus de conduite du véhicule. En tant que module central de la conduite autonome, la qualité de la prédiction de trajectoire est cruciale pour le contrôle de la planification en aval. La tâche de prédiction de trajectoire dispose d'une riche pile technologique et nécessite une connaissance de la perception dynamique/statique de la conduite autonome, des cartes de haute précision, des lignes de voie, des compétences en architecture de réseau neuronal (CNN&GNN&Transformer), etc. Il est très difficile de démarrer ! De nombreux fans espèrent se lancer dans la prédiction de trajectoire le plus tôt possible et éviter les pièges. Aujourd'hui, je vais faire le point sur quelques problèmes courants et des méthodes d'apprentissage introductives pour la prédiction de trajectoire ! Connaissances introductives 1. Existe-t-il un ordre d'entrée pour les épreuves de prévisualisation ? R : Regardez d’abord l’enquête, p

Cet article explore le problème de la détection précise d'objets sous différents angles de vue (tels que la perspective et la vue à vol d'oiseau) dans la conduite autonome, en particulier comment transformer efficacement les caractéristiques de l'espace en perspective (PV) en vue à vol d'oiseau (BEV). implémenté via le module Visual Transformation (VT). Les méthodes existantes sont globalement divisées en deux stratégies : la conversion 2D en 3D et la conversion 3D en 2D. Les méthodes 2D vers 3D améliorent les caractéristiques 2D denses en prédisant les probabilités de profondeur, mais l'incertitude inhérente aux prévisions de profondeur, en particulier dans les régions éloignées, peut introduire des inexactitudes. Alors que les méthodes 3D vers 2D utilisent généralement des requêtes 3D pour échantillonner des fonctionnalités 2D et apprendre les poids d'attention de la correspondance entre les fonctionnalités 3D et 2D via un transformateur, ce qui augmente le temps de calcul et de déploiement.

Quelques réflexions personnelles de l'auteur Dans le domaine de la conduite autonome, avec le développement de sous-tâches/solutions de bout en bout basées sur BEV, les données d'entraînement multi-vues de haute qualité et la construction de scènes de simulation correspondantes sont devenues de plus en plus importantes. En réponse aux problèmes des tâches actuelles, la « haute qualité » peut être divisée en trois aspects : des scénarios à longue traîne dans différentes dimensions : comme les véhicules à courte portée dans les données sur les obstacles et les angles de cap précis lors du découpage des voitures, et les données sur les lignes de voie. . Scènes telles que des courbes avec des courbures différentes ou des rampes/fusions/fusions difficiles à capturer. Celles-ci reposent souvent sur de grandes quantités de données collectées et sur des stratégies complexes d’exploration de données, qui sont coûteuses. Valeur réelle 3D - image hautement cohérente : l'acquisition actuelle des données BEV est souvent affectée par des erreurs d'installation/calibrage du capteur, des cartes de haute précision et l'algorithme de reconstruction lui-même. cela m'a amené à

J'ai soudainement découvert un article vieux de 19 ans GSLAM : A General SLAM Framework and Benchmark open source code : https://github.com/zdzhaoyong/GSLAM Accédez directement au texte intégral et ressentez la qualité de ce travail ~ 1 Technologie SLAM abstraite a remporté de nombreux succès récemment et a attiré de nombreuses entreprises de haute technologie. Cependant, la question de savoir comment s'interfacer avec les algorithmes existants ou émergents pour effectuer efficacement des analyses comparatives en termes de vitesse, de robustesse et de portabilité reste une question. Dans cet article, une nouvelle plateforme SLAM appelée GSLAM est proposée, qui fournit non seulement des capacités d'évaluation, mais fournit également aux chercheurs un moyen utile de développer rapidement leurs propres systèmes SLAM.

Veuillez noter que cet homme carré fronça les sourcils, pensant à l'identité des « invités non invités » devant lui. Il s’est avéré qu’elle se trouvait dans une situation dangereuse, et une fois qu’elle s’en est rendu compte, elle a rapidement commencé une recherche mentale pour trouver une stratégie pour résoudre le problème. Finalement, elle a décidé de fuir les lieux, de demander de l'aide le plus rapidement possible et d'agir immédiatement. En même temps, la personne de l'autre côté pensait la même chose qu'elle... Il y avait une telle scène dans "Minecraft" où tous les personnages étaient contrôlés par l'intelligence artificielle. Chacun d’eux a un cadre identitaire unique. Par exemple, la jeune fille mentionnée précédemment est une coursière de 17 ans mais intelligente et courageuse. Ils ont la capacité de se souvenir, de penser et de vivre comme des humains dans cette petite ville de Minecraft. Ce qui les anime est une toute nouvelle,

Le 23 septembre, l'article « DeepModelFusion:ASurvey » a été publié par l'Université nationale de technologie de la défense, JD.com et l'Institut de technologie de Pékin. La fusion/fusion de modèles profonds est une technologie émergente qui combine les paramètres ou les prédictions de plusieurs modèles d'apprentissage profond en un seul modèle. Il combine les capacités de différents modèles pour compenser les biais et les erreurs des modèles individuels pour de meilleures performances. La fusion profonde de modèles sur des modèles d'apprentissage profond à grande échelle (tels que le LLM et les modèles de base) est confrontée à certains défis, notamment un coût de calcul élevé, un espace de paramètres de grande dimension, l'interférence entre différents modèles hétérogènes, etc. Cet article divise les méthodes de fusion de modèles profonds existantes en quatre catégories : (1) « Connexion de modèles », qui relie les solutions dans l'espace de poids via un chemin de réduction des pertes pour obtenir une meilleure fusion de modèles initiale.
