


Problème de changement de distribution dans la formation contradictoire
Problème de changement de distribution dans la formation contradictoire, des exemples de code spécifiques sont nécessaires
Résumé : Le changement de distribution est un problème courant dans les tâches d'apprentissage automatique et d'apprentissage profond. Afin de résoudre ce problème, les chercheurs ont proposé la méthode de formation contradictoire. Cet article présentera le problème du changement de distribution dans la formation contradictoire et donnera des exemples de code basés sur les réseaux contradictoires génératifs (GAN).
- Introduction
Dans les tâches d'apprentissage automatique et d'apprentissage profond, il est généralement supposé que les données de l'ensemble d'entraînement et de l'ensemble de test sont échantillonnées indépendamment à partir de la même distribution. Cependant, dans les applications pratiques, cette hypothèse n'est pas vraie car il existe souvent des différences dans les distributions entre les données d'entraînement et les données de test. Ce changement de distribution (Distribution Shift) entraînera une dégradation des performances du modèle dans les applications pratiques. Afin de résoudre ce problème, les chercheurs ont proposé des méthodes de formation contradictoire. - Formation contradictoire
La formation contradictoire est une méthode permettant de réduire la différence de distribution entre l'ensemble de formation et l'ensemble de test en formant un réseau générateur et un réseau discriminateur. Le réseau générateur est chargé de générer des échantillons similaires aux données de l'ensemble de test, tandis que le réseau discriminateur est chargé de déterminer si l'échantillon d'entrée provient de l'ensemble d'apprentissage ou de l'ensemble de test.
Le processus de formation contradictoire peut être simplifié aux étapes suivantes :
(1) Formation du réseau de générateurs : le réseau de générateurs reçoit un vecteur de bruit aléatoire en entrée et génère un échantillon similaire aux données de l'ensemble de test.
(2) Former le réseau discriminateur : Le réseau discriminateur reçoit un échantillon en entrée et le classe comme provenant de l'ensemble d'entraînement ou de l'ensemble de test.
(3) La rétro-propagation met à jour le réseau de générateurs : le but du réseau de générateurs est de tromper le réseau de discriminateurs en classant à tort les échantillons générés comme provenant de l'ensemble d'apprentissage.
(4) Répétez les étapes (1) à (3) plusieurs fois jusqu'à ce que le réseau de générateurs converge.
- Exemple de code
Ce qui suit est un exemple de code de formation contradictoire basé sur le framework Python et TensorFlow :
import tensorflow as tf from tensorflow.keras import layers # 定义生成器网络 def make_generator_model(): model = tf.keras.Sequential() model.add(layers.Dense(256, input_shape=(100,), use_bias=False)) model.add(layers.BatchNormalization()) model.add(layers.LeakyReLU()) model.add(layers.Dense(512, use_bias=False)) model.add(layers.BatchNormalization()) model.add(layers.LeakyReLU()) model.add(layers.Dense(28 * 28, activation='tanh')) model.add(layers.Reshape((28, 28, 1))) return model # 定义判别器网络 def make_discriminator_model(): model = tf.keras.Sequential() model.add(layers.Flatten(input_shape=(28, 28, 1))) model.add(layers.Dense(512)) model.add(layers.LeakyReLU()) model.add(layers.Dense(256)) model.add(layers.LeakyReLU()) model.add(layers.Dense(1, activation='sigmoid')) return model # 定义生成器和判别器 generator = make_generator_model() discriminator = make_discriminator_model() # 定义生成器和判别器的优化器 generator_optimizer = tf.keras.optimizers.Adam(1e-4) discriminator_optimizer = tf.keras.optimizers.Adam(1e-4) # 定义损失函数 cross_entropy = tf.keras.losses.BinaryCrossentropy(from_logits=True) # 定义生成器的训练步骤 @tf.function def train_generator_step(images): noise = tf.random.normal([BATCH_SIZE, 100]) with tf.GradientTape() as gen_tape: generated_images = generator(noise, training=True) fake_output = discriminator(generated_images, training=False) gen_loss = generator_loss(fake_output) gradients_of_generator = gen_tape.gradient(gen_loss, generator.trainable_variables) generator_optimizer.apply_gradients(zip(gradients_of_generator, generator.trainable_variables)) # 定义判别器的训练步骤 @tf.function def train_discriminator_step(images): noise = tf.random.normal([BATCH_SIZE, 100]) with tf.GradientTape() as disc_tape: generated_images = generator(noise, training=True) real_output = discriminator(images, training=True) fake_output = discriminator(generated_images, training=True) disc_loss = discriminator_loss(real_output, fake_output) gradients_of_discriminator = disc_tape.gradient(disc_loss, discriminator.trainable_variables) discriminator_optimizer.apply_gradients(zip(gradients_of_discriminator, discriminator.trainable_variables)) # 开始对抗训练 def train(dataset, epochs): for epoch in range(epochs): for image_batch in dataset: train_discriminator_step(image_batch) train_generator_step(image_batch) # 加载MNIST数据集 (train_images, _), (_, _) = tf.keras.datasets.mnist.load_data() train_images = train_images.reshape(train_images.shape[0], 28, 28, 1).astype('float32') train_images = (train_images - 127.5) / 127.5 train_dataset = tf.data.Dataset.from_tensor_slices(train_images).shuffle(BUFFER_SIZE).batch(BATCH_SIZE) # 指定批次大小和缓冲区大小 BATCH_SIZE = 256 BUFFER_SIZE = 60000 # 指定训练周期 EPOCHS = 50 # 开始训练 train(train_dataset, EPOCHS)
Dans l'exemple de code ci-dessus, nous avons défini la structure de réseau du générateur et du discriminateur, et sélectionné l'optimiseur Adam et le croisement binaire Fonction de perte d'entropie. Ensuite, nous définissons les étapes de formation du générateur et du discriminateur et formons le réseau via la fonction de formation. Enfin, nous avons chargé l'ensemble de données MNIST et effectué le processus de formation contradictoire.
- Conclusion
Cet article présente le problème du changement de distribution dans la formation contradictoire et donne des exemples de code basés sur des réseaux contradictoires génératifs. La formation contradictoire est une méthode efficace pour réduire la différence de distribution entre l'ensemble de formation et l'ensemble de test, ce qui peut améliorer les performances du modèle dans la pratique. En pratiquant et en améliorant les exemples de code, nous pouvons mieux comprendre et appliquer les méthodes de formation contradictoire.
Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Outils d'IA chauds

Undresser.AI Undress
Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover
Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool
Images de déshabillage gratuites

Clothoff.io
Dissolvant de vêtements AI

AI Hentai Generator
Générez AI Hentai gratuitement.

Article chaud

Outils chauds

Bloc-notes++7.3.1
Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise
Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1
Puissant environnement de développement intégré PHP

Dreamweaver CS6
Outils de développement Web visuel

SublimeText3 version Mac
Logiciel d'édition de code au niveau de Dieu (SublimeText3)

Sujets chauds

Résolvez le problème « erreur : redéfinition de la classe 'ClassName » dans le code C++. Dans la programmation C++, nous rencontrons souvent diverses erreurs de compilation. L'une des erreurs courantes est "error: redefinitionofclass 'ClassName'" (erreur de redéfinition de la classe 'ClassName'). Cette erreur se produit généralement lorsque la même classe est définie plusieurs fois. Cet article sera

Pour résoudre le problème selon lequel jQuery.val() ne peut pas être utilisé, des exemples de code spécifiques sont requis. Pour les développeurs front-end, l'utilisation de jQuery est l'une des opérations courantes. Parmi eux, utiliser la méthode .val() pour obtenir ou définir la valeur d'un élément de formulaire est une opération très courante. Cependant, dans certains cas précis, le problème de ne pas pouvoir utiliser la méthode .val() peut se poser. Cet article présentera quelques situations et solutions courantes, et fournira des exemples de code spécifiques. Description du problème Lorsque vous utilisez jQuery pour développer des pages frontales, vous rencontrerez parfois

Connu pour ses performances puissantes et ses fonctionnalités polyvalentes, l’iPhone n’est pas à l’abri de contretemps ou de difficultés techniques occasionnelles, un trait commun aux appareils électroniques complexes. Rencontrer des problèmes avec votre iPhone peut être frustrant, mais aucune alarme n'est généralement nécessaire. Dans ce guide complet, nous visons à démystifier certains des défis les plus fréquemment rencontrés associés à l’utilisation de l’iPhone. Notre approche étape par étape est conçue pour vous aider à résoudre ces problèmes courants, en vous proposant des solutions pratiques et des conseils de dépannage pour remettre votre équipement en parfait état de fonctionnement. Que vous soyez confronté à un problème ou à un problème plus complexe, cet article peut vous aider à les résoudre efficacement. Conseils de dépannage généraux Avant de passer aux étapes de dépannage spécifiques, voici quelques conseils utiles

Le problème d'évaluation de l'effet de clustering dans l'algorithme de clustering nécessite des exemples de code spécifiques. Le clustering est une méthode d'apprentissage non supervisée qui regroupe des échantillons similaires dans une seule catégorie en regroupant les données. Dans les algorithmes de clustering, la manière d’évaluer l’effet du clustering est une question importante. Cet article présentera plusieurs indicateurs d'évaluation de l'effet de clustering couramment utilisés et donnera des exemples de code correspondants. 1. Indice d'évaluation de l'effet de clustering Coefficient Silhouette Le coefficient Silhouette évalue l'effet de clustering en calculant la proximité de l'échantillon et le degré de séparation des autres clusters.

La capacité de généralisation des modèles d'apprentissage automatique nécessite des exemples de code spécifiques. Avec le développement et l'application de l'apprentissage automatique de plus en plus répandus, les gens accordent de plus en plus d'attention à la capacité de généralisation des modèles d'apprentissage automatique. La capacité de généralisation fait référence à la capacité de prédiction d'un modèle d'apprentissage automatique sur des données non étiquetées et peut également être comprise comme l'adaptabilité du modèle dans le monde réel. Un bon modèle d’apprentissage automatique doit avoir une grande capacité de généralisation et être capable de faire des prédictions précises sur de nouvelles données. Cependant, dans les applications pratiques, nous rencontrons souvent des modèles qui fonctionnent bien sur l'ensemble d'entraînement, mais qui échouent sur l'ensemble de test ou sur des modèles réels.

Résolution des erreurs PHP : problèmes rencontrés lors de l'héritage des classes parentes En PHP, l'héritage est une fonctionnalité importante de la programmation orientée objet. Grâce à l'héritage, nous pouvons réutiliser le code existant, l'étendre et l'améliorer sans modifier le code d'origine. Bien que l'héritage soit largement utilisé dans le développement, vous pouvez parfois rencontrer des problèmes d'erreur lors de l'héritage d'une classe parent. Cet article se concentrera sur la résolution des problèmes courants rencontrés lors de l'héritage d'une classe parent et fournira des exemples de code correspondants. Question 1 : la classe parent est introuvable pendant le processus d'héritage de la classe parent, si le système ne le fait pas.

Le problème de la conception des récompenses dans l'apprentissage par renforcement nécessite des exemples de code spécifiques. L'apprentissage par renforcement est une méthode d'apprentissage automatique dont l'objectif est d'apprendre à prendre des mesures qui maximisent les récompenses cumulatives grâce à l'interaction avec l'environnement. Dans l’apprentissage par renforcement, la récompense joue un rôle crucial. Elle constitue un signal dans le processus d’apprentissage de l’agent et sert à guider son comportement. Cependant, la conception des récompenses est un problème difficile, et une conception raisonnable des récompenses peut grandement affecter les performances des algorithmes d’apprentissage par renforcement. Dans l’apprentissage par renforcement, les récompenses peuvent être considérées comme l’agent contre l’environnement.

Le problème d'acquisition d'étiquettes dans l'apprentissage faiblement supervisé nécessite des exemples de code spécifiques Introduction : L'apprentissage faiblement supervisé est une méthode d'apprentissage automatique qui utilise des étiquettes faibles pour la formation. Différent de l’apprentissage supervisé traditionnel, l’apprentissage faiblement supervisé n’a besoin que d’utiliser moins d’étiquettes pour former le modèle, plutôt que chaque échantillon doit avoir une étiquette précise. Cependant, dans l’apprentissage faiblement supervisé, la manière d’obtenir avec précision des informations utiles à partir d’étiquettes faibles est une question clé. Cet article présentera le problème d'acquisition d'étiquettes dans l'apprentissage faiblement supervisé et donnera des exemples de code spécifiques. Introduction au problème d’acquisition de labels en apprentissage faiblement supervisé :
