Maison Périphériques technologiques IA Problème d'annotation d'étiquettes dans l'apprentissage faiblement supervisé

Problème d'annotation d'étiquettes dans l'apprentissage faiblement supervisé

Oct 09, 2023 pm 10:36 PM
问题 apprentissage faiblement supervisé Annotation de balise

Problème dannotation détiquettes dans lapprentissage faiblement supervisé

Problèmes d'annotation d'étiquettes et exemples de code dans l'apprentissage faiblement supervisé

Introduction :

Avec le développement de l'intelligence artificielle, l'apprentissage automatique a fait des progrès significatifs dans de nombreux domaines. Cependant, dans le monde réel, obtenir des ensembles de données à grande échelle annotés avec précision est très coûteux et prend beaucoup de temps. Pour résoudre ce problème, l'apprentissage faiblement supervisé est devenu une méthode qui a beaucoup retenu l'attention, qui permet d'effectuer des tâches d'apprentissage automatique hautes performances en utilisant des données bruitées ou incomplètement étiquetées pour la formation.

Dans l'apprentissage faiblement supervisé, le problème de l'annotation des étiquettes est au cœur de la problématique. Les méthodes traditionnelles d’apprentissage supervisé supposent généralement que chaque échantillon d’apprentissage contient des informations d’étiquette précises, mais dans des scénarios réels, il est difficile d’obtenir des étiquettes aussi parfaites. Par conséquent, les chercheurs ont proposé diverses méthodes pour résoudre le problème de l’annotation des étiquettes dans l’apprentissage faiblement supervisé.

1. Méthode d'apprentissage multi-instance

L'apprentissage multi-instance est une méthode d'apprentissage faiblement supervisée couramment utilisée, particulièrement adaptée aux problèmes d'annotation d'étiquettes. Cela suppose que l'échantillon d'apprentissage est constitué de plusieurs instances, dont certaines seulement ont des étiquettes. En apprenant les représentations au niveau de l’échantillon et de l’instance, des informations utiles peuvent en être extraites.

Ce qui suit est un exemple de code qui utilise une méthode d'apprentissage multi-instance pour résoudre le problème de classification d'images :

import numpy as np
from sklearn.svm import SVC
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score

# 生成虚拟的多实例样本和标签
# 每个样本由多个实例组成,其中只有一个实例具有标签
X = []
Y = []
for _ in range(1000):
    instances = np.random.rand(10, 10)
    labels = np.random.randint(0, 2, 10)
    label = np.random.choice(labels)
    X.append(instances)
    Y.append(label)

# 将多实例样本转化为样本级别的表示
X = np.array(X).reshape(-1, 100)
Y = np.array(Y)

# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size=0.2)

# 训练多实例学习模型
model = SVC()
model.fit(X_train, y_train)

# 在测试集上进行预测
y_pred = model.predict(X_test)

# 计算准确率
accuracy = accuracy_score(y_test, y_pred)
print("准确率:", accuracy)
Copier après la connexion

2. Méthode d'apprentissage semi-supervisé

L'apprentissage semi-supervisé est une autre méthode pour résoudre le problème de l'apprentissage faiblement supervisé annotation de l'étiquette. Il utilise certaines données étiquetées et une grande quantité de données non étiquetées pour la formation. En exploitant les informations provenant de données non étiquetées, les performances du modèle peuvent être améliorées.

Ce qui suit est un exemple de code qui utilise des méthodes d'apprentissage semi-supervisé pour résoudre des problèmes de classification de texte :

import numpy as np
from sklearn.svm import SVC
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score

# 生成虚拟的带有标签和未标签的文本样本
X_labeled = np.random.rand(100, 10)  # 带有标签的样本
Y_labeled = np.random.randint(0, 2, 100)  # 标签

X_unlabeled = np.random.rand(900, 10)  # 未标签的样本

# 将标签化和未标签化样本合并
X = np.concatenate((X_labeled, X_unlabeled))
Y = np.concatenate((Y_labeled, np.zeros(900)))

# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size=0.2)

# 训练半监督学习模型
model = SVC()
model.fit(X_train, y_train)

# 在测试集上进行预测
y_pred = model.predict(X_test)

# 计算准确率
accuracy = accuracy_score(y_test, y_pred)
print("准确率:", accuracy)
Copier après la connexion

Résumé :

Le problème d'annotation d'étiquettes dans l'apprentissage faiblement supervisé est un défi important. En utilisant des méthodes telles que l’apprentissage multi-instance et l’apprentissage semi-supervisé, nous pouvons former des modèles d’apprentissage automatique hautes performances sur des données bruyantes et incomplètement étiquetées. Les exemples de code ci-dessus de deux méthodes couramment utilisées peuvent servir de référence et d'inspiration pour résoudre des problèmes spécifiques. À mesure que la recherche progresse, des méthodes plus innovantes émergeront pour nous aider à résoudre le problème de l’annotation des étiquettes dans l’apprentissage faiblement supervisé.

Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Déclaration de ce site Web
Le contenu de cet article est volontairement contribué par les internautes et les droits d'auteur appartiennent à l'auteur original. Ce site n'assume aucune responsabilité légale correspondante. Si vous trouvez un contenu suspecté de plagiat ou de contrefaçon, veuillez contacter admin@php.cn

Outils d'IA chauds

Undresser.AI Undress

Undresser.AI Undress

Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover

AI Clothes Remover

Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool

Undress AI Tool

Images de déshabillage gratuites

Clothoff.io

Clothoff.io

Dissolvant de vêtements AI

AI Hentai Generator

AI Hentai Generator

Générez AI Hentai gratuitement.

Article chaud

R.E.P.O. Crystals d'énergie expliqués et ce qu'ils font (cristal jaune)
4 Il y a quelques semaines By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Meilleurs paramètres graphiques
4 Il y a quelques semaines By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Comment réparer l'audio si vous n'entendez personne
4 Il y a quelques semaines By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Commandes de chat et comment les utiliser
4 Il y a quelques semaines By 尊渡假赌尊渡假赌尊渡假赌

Outils chauds

Bloc-notes++7.3.1

Bloc-notes++7.3.1

Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise

SublimeText3 version chinoise

Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1

Envoyer Studio 13.0.1

Puissant environnement de développement intégré PHP

Dreamweaver CS6

Dreamweaver CS6

Outils de développement Web visuel

SublimeText3 version Mac

SublimeText3 version Mac

Logiciel d'édition de code au niveau de Dieu (SublimeText3)

Problèmes d'évaluation de l'effet de clustering dans les algorithmes de clustering Problèmes d'évaluation de l'effet de clustering dans les algorithmes de clustering Oct 10, 2023 pm 01:12 PM

Le problème d'évaluation de l'effet de clustering dans l'algorithme de clustering nécessite des exemples de code spécifiques. Le clustering est une méthode d'apprentissage non supervisée qui regroupe des échantillons similaires dans une seule catégorie en regroupant les données. Dans les algorithmes de clustering, la manière d’évaluer l’effet du clustering est une question importante. Cet article présentera plusieurs indicateurs d'évaluation de l'effet de clustering couramment utilisés et donnera des exemples de code correspondants. 1. Indice d'évaluation de l'effet de clustering Coefficient Silhouette Le coefficient Silhouette évalue l'effet de clustering en calculant la proximité de l'échantillon et le degré de séparation des autres clusters.

Résoudre le problème « erreur : redéfinition de la classe 'ClassName' » qui apparaît dans le code C++ Résoudre le problème « erreur : redéfinition de la classe 'ClassName' » qui apparaît dans le code C++ Aug 25, 2023 pm 06:01 PM

Résolvez le problème « erreur : redéfinition de la classe 'ClassName » dans le code C++. Dans la programmation C++, nous rencontrons souvent diverses erreurs de compilation. L'une des erreurs courantes est "error: redefinitionofclass 'ClassName'" (erreur de redéfinition de la classe 'ClassName'). Cette erreur se produit généralement lorsque la même classe est définie plusieurs fois. Cet article sera

Que dois-je faire si je ne parviens pas à télécharger Steam sur Windows 10 ? Que dois-je faire si je ne parviens pas à télécharger Steam sur Windows 10 ? Jul 07, 2023 pm 01:37 PM

Steam est une plate-forme de jeu très populaire avec de nombreux jeux de haute qualité, mais certains utilisateurs de Win10 signalent qu'ils ne peuvent pas télécharger Steam. Il est fort probable que l'adresse du serveur IPv4 de l'utilisateur ne soit pas définie correctement. Pour résoudre ce problème, vous pouvez essayer d'installer Steam en mode de compatibilité, puis modifier manuellement le serveur DNS en 114.114.114.114, et vous devriez pouvoir le télécharger plus tard. Que faire si Win10 ne parvient pas à télécharger Steam : Sous Win10, vous pouvez essayer de l'installer en mode de compatibilité. Après la mise à jour, vous devez désactiver le mode de compatibilité, sinon la page Web ne se chargera pas. Cliquez sur les propriétés de l'installation du programme pour exécuter le programme en mode de compatibilité. Redémarrer pour augmenter la mémoire, la puissance

Apprenez à diagnostiquer les problèmes courants de l'iPhone Apprenez à diagnostiquer les problèmes courants de l'iPhone Dec 03, 2023 am 08:15 AM

Connu pour ses performances puissantes et ses fonctionnalités polyvalentes, l’iPhone n’est pas à l’abri de contretemps ou de difficultés techniques occasionnelles, un trait commun aux appareils électroniques complexes. Rencontrer des problèmes avec votre iPhone peut être frustrant, mais aucune alarme n'est généralement nécessaire. Dans ce guide complet, nous visons à démystifier certains des défis les plus fréquemment rencontrés associés à l’utilisation de l’iPhone. Notre approche étape par étape est conçue pour vous aider à résoudre ces problèmes courants, en vous proposant des solutions pratiques et des conseils de dépannage pour remettre votre équipement en parfait état de fonctionnement. Que vous soyez confronté à un problème ou à un problème plus complexe, cet article peut vous aider à les résoudre efficacement. Conseils de dépannage généraux Avant de passer aux étapes de dépannage spécifiques, voici quelques conseils utiles

Résoudre l'erreur PHP : problèmes rencontrés lors de l'héritage de la classe parent Résoudre l'erreur PHP : problèmes rencontrés lors de l'héritage de la classe parent Aug 17, 2023 pm 01:33 PM

Résolution des erreurs PHP : problèmes rencontrés lors de l'héritage des classes parentes En PHP, l'héritage est une fonctionnalité importante de la programmation orientée objet. Grâce à l'héritage, nous pouvons réutiliser le code existant, l'étendre et l'améliorer sans modifier le code d'origine. Bien que l'héritage soit largement utilisé dans le développement, vous pouvez parfois rencontrer des problèmes d'erreur lors de l'héritage d'une classe parent. Cet article se concentrera sur la résolution des problèmes courants rencontrés lors de l'héritage d'une classe parent et fournira des exemples de code correspondants. Question 1 : la classe parent est introuvable pendant le processus d'héritage de la classe parent, si le système ne le fait pas.

Comment résoudre le problème selon lequel jQuery ne peut pas obtenir la valeur de l'élément de formulaire Comment résoudre le problème selon lequel jQuery ne peut pas obtenir la valeur de l'élément de formulaire Feb 19, 2024 pm 02:01 PM

Pour résoudre le problème selon lequel jQuery.val() ne peut pas être utilisé, des exemples de code spécifiques sont requis. Pour les développeurs front-end, l'utilisation de jQuery est l'une des opérations courantes. Parmi eux, utiliser la méthode .val() pour obtenir ou définir la valeur d'un élément de formulaire est une opération très courante. Cependant, dans certains cas précis, le problème de ne pas pouvoir utiliser la méthode .val() peut se poser. Cet article présentera quelques situations et solutions courantes, et fournira des exemples de code spécifiques. Description du problème Lorsque vous utilisez jQuery pour développer des pages frontales, vous rencontrerez parfois

Problème d'acquisition d'étiquettes dans l'apprentissage faiblement supervisé Problème d'acquisition d'étiquettes dans l'apprentissage faiblement supervisé Oct 08, 2023 am 09:18 AM

Le problème d'acquisition d'étiquettes dans l'apprentissage faiblement supervisé nécessite des exemples de code spécifiques Introduction : L'apprentissage faiblement supervisé est une méthode d'apprentissage automatique qui utilise des étiquettes faibles pour la formation. Différent de l’apprentissage supervisé traditionnel, l’apprentissage faiblement supervisé n’a besoin que d’utiliser moins d’étiquettes pour former le modèle, plutôt que chaque échantillon doit avoir une étiquette précise. Cependant, dans l’apprentissage faiblement supervisé, la manière d’obtenir avec précision des informations utiles à partir d’étiquettes faibles est une question clé. Cet article présentera le problème d'acquisition d'étiquettes dans l'apprentissage faiblement supervisé et donnera des exemples de code spécifiques. Introduction au problème d’acquisition de labels en apprentissage faiblement supervisé :

Le problème de la capacité de généralisation des modèles d'apprentissage automatique Le problème de la capacité de généralisation des modèles d'apprentissage automatique Oct 08, 2023 am 10:46 AM

La capacité de généralisation des modèles d'apprentissage automatique nécessite des exemples de code spécifiques. Avec le développement et l'application de l'apprentissage automatique de plus en plus répandus, les gens accordent de plus en plus d'attention à la capacité de généralisation des modèles d'apprentissage automatique. La capacité de généralisation fait référence à la capacité de prédiction d'un modèle d'apprentissage automatique sur des données non étiquetées et peut également être comprise comme l'adaptabilité du modèle dans le monde réel. Un bon modèle d’apprentissage automatique doit avoir une grande capacité de généralisation et être capable de faire des prédictions précises sur de nouvelles données. Cependant, dans les applications pratiques, nous rencontrons souvent des modèles qui fonctionnent bien sur l'ensemble d'entraînement, mais qui échouent sur l'ensemble de test ou sur des modèles réels.

See all articles