Table des matières
Nouvelle avancée dans le codage numérique
xVal : codage continu des nombres
Raisonnement numérique
Partie expérimentale
Maison Périphériques technologiques IA 1 jeton met fin au problème du codage numérique LLM ! Neuf grandes institutions ont publié conjointement xVal : les chiffres qui ne sont pas inclus dans l'ensemble de formation peuvent également être prédits !

1 jeton met fin au problème du codage numérique LLM ! Neuf grandes institutions ont publié conjointement xVal : les chiffres qui ne sont pas inclus dans l'ensemble de formation peuvent également être prédits !

Oct 19, 2023 pm 02:25 PM
ai

Bien que les performances des grands modèles de langage (LLM) soient très puissantes dans les tâches d'analyse et de génération de texte, face à des problèmes impliquant des nombres, tels que la multiplication à plusieurs chiffres, en raison de l'absence d'un mécanisme unifié et complet de segmentation des mots numériques au sein le modèle, il y aura des problèmes. En conséquence, LLM ne peut pas comprendre la sémantique des nombres et invente des réponses aléatoires.

À l'heure actuelle, l'un des obstacles pour lesquels le LLM n'a pas été largement utilisé dans l'analyse des données dans le domaine scientifique est le problème de l'encodage numérique.

Récemment, neuf instituts de recherche, dont le Flatiron Institute, le Lawrence Berkeley National Laboratory, l'Université de Cambridge, l'Université de New York et l'Université de Princeton, ont publié conjointement un nouveau système de codage numérique xVal, qui ne nécessite qu'un seul jeton pour coder tous les nombres.

1 jeton met fin au problème du codage numérique LLM ! Neuf grandes institutions ont publié conjointement xVal : les chiffres qui ne sont pas inclus dans lensemble de formation peuvent également être prédits !

Lien papier : https://arxiv.org/pdf/2310.02989.pdf

xVal représente la vraie valeur cible en mettant à l'échelle numérique le vecteur d'intégration du jeton dédié ([NUM]), et Ensuite, combinée à la méthode de raisonnement numérique modifiée, la stratégie xVal rend le modèle continu de bout en bout lors du mappage entre les numéros de chaîne d'entrée et les numéros de sortie, ce qui le rend plus adapté aux applications dans le domaine scientifique.

Les résultats de l'évaluation sur des ensembles de données synthétiques et réels montrent que xVal non seulement fonctionne mieux et enregistre plus de jetons que les schémas de codage numérique existants, mais présente également de meilleures propriétés de généralisation d'interpolation.

Nouvelle avancée dans le codage numérique

Le schéma standard de segmentation des mots LLM ne fait pas de distinction entre les nombres et le texte, il est donc impossible de quantifier les valeurs.

Des travaux antérieurs ont été réalisés pour mapper tous les nombres sur un ensemble limité de chiffres prototypes sous forme de notation scientifique, en utilisant 10 comme base, ou pour calculer la distance cosinus entre les incorporations de nombres pour refléter le nombre lui-même. a été utilisé avec succès pour résoudre des problèmes d’algèbre linéaire tels que la multiplication matricielle.

Cependant, pour les problèmes continus ou fluides dans le domaine scientifique, les modèles de langage ne peuvent toujours pas bien gérer les problèmes d'interpolation et de généralisation hors distribution, car après avoir codé les nombres en texte, LLM est toujours de nature discrète dans l'encodage et le décodage. étapes , il est difficile d'apprendre des fonctions continues approximatives. L'idée de

xVal est d'encoder de manière multiplicative la taille numérique et de l'orienter dans une direction apprenable dans l'espace d'intégration, ce qui change considérablement la façon dont les nombres sont traités et interprétés dans l'architecture Transformer.

xVal utilise un seul jeton pour l'encodage numérique, ce qui présente les avantages de l'efficacité des jetons et d'une empreinte de vocabulaire minimale.

Combinée au paradigme de raisonnement numérique modifié, la valeur du modèle Transformer est continue (lisse) lors du mappage entre les nombres d'entrée et les nombres de chaînes de sortie. Lorsque la fonction approximative est continue ou lisse, elle peut apporter plus de bons biais inductifs.

xVal : codage continu des nombres

xVal n'utilise pas différents jetons pour différents nombres, mais intègre directement les valeurs selon des directions d'apprentissage spécifiques dans l'espace d'intégration.

1 jeton met fin au problème du codage numérique LLM ! Neuf grandes institutions ont publié conjointement xVal : les chiffres qui ne sont pas inclus dans lensemble de formation peuvent également être prédits !

En supposant que la chaîne d'entrée contient à la fois des nombres et du texte, le système analysera d'abord l'entrée, extraira toutes les valeurs, puis construira une nouvelle chaîne dans laquelle les nombres sont remplacés par [NUM bit]. symbole, puis multipliez le vecteur d'incorporation de [NUM] par sa valeur correspondante.

L'ensemble du processus d'encodage peut être utilisé pour la modélisation du langage de masque (MLM) et la génération autorégressive (AR).

Normalisation implicite via une norme de couche basée sur la normalisation de couche

Dans l'implémentation spécifique, l'intégration multiplicative de xVal dans le premier bloc Transformer doit être ajoutée après que le vecteur de codage de position supérieure et la norme de couche normalisent l'intégration de chaque jeton en fonction de l'échantillon d'entrée.

Lorsque l'intégration de position n'est pas colinéaire avec l'intégration étiquetée [NUM], la valeur scalaire peut être transmise via une fonction de redimensionnement non linéaire.

Supposons que u est l'intégration de [NUM], p est l'intégration de position et x est la valeur scalaire codée, u · p = 0, où ∥u∥ =∥p. ∥ = 1, tu peux Got

1 jeton met fin au problème du codage numérique LLM ! Neuf grandes institutions ont publié conjointement xVal : les chiffres qui ne sont pas inclus dans lensemble de formation peuvent également être prédits !

C'est-à-dire que la valeur de x est codée pour être dans la même direction que u, et cette propriété peut toujours être conservée après l'entraînement.

1 jeton met fin au problème du codage numérique LLM ! Neuf grandes institutions ont publié conjointement xVal : les chiffres qui ne sont pas inclus dans lensemble de formation peuvent également être prédits !

Cette caractéristique de normalisation signifie que la plage dynamique de xVal est plus petite que celle des autres schémas de codage basés sur du texte, qui est définie sur [-5, 5] dans l'expérience en tant qu'étapes de traitement de pré-entraînement.

Raisonnement numérique

xVal définit une intégration continue dans la valeur d'entrée, mais si une tâche multi-classification est utilisée comme sortie et que l'algorithme d'entraînement prend en compte le mappage de la valeur d'entrée à la valeur de sortie, le modèle dans son ensemble, ce n'est pas continu de bout en bout et les nombres doivent être traités séparément au niveau de la couche de sortie.

1 jeton met fin au problème du codage numérique LLM ! Neuf grandes institutions ont publié conjointement xVal : les chiffres qui ne sont pas inclus dans lensemble de formation peuvent également être prédits !

Selon la pratique standard du modèle de langage Transformer, les chercheurs ont défini une tête de jeton pour générer la distribution de probabilité des jetons de vocabulaire.

Parce que xVal utilise [NUM] pour remplacer les nombres, la tête ne contient aucune information sur la valeur numérique, donc une nouvelle tête numérique avec une sortie scalaire doit être introduite et entraînée via une perte d'erreur quadratique moyenne (MSE) pour Restaure la valeur numérique spécifique associée à [NUM].

Après avoir donné l'entrée, observez d'abord la sortie de la tête du jeton. Si le jeton généré est [NUM], regardez la tête numérique pour remplir la valeur du jeton.

Dans les expériences, comme le modèle Transformer est continu de bout en bout lors de la déduction de valeurs, il fonctionne mieux lors de l'interpolation vers des valeurs invisibles.

Partie expérimentale

Comparaison avec d'autres méthodes d'encodage numérique

Les chercheurs ont comparé les performances de XVAL avec quatre autres encodages numériques, qui nécessitent tous que les nombres soient traités dans la première forme ±ddd E±d, puis appelez un ou plusieurs jetons selon le format pour déterminer le codage.

1 jeton met fin au problème du codage numérique LLM ! Neuf grandes institutions ont publié conjointement xVal : les chiffres qui ne sont pas inclus dans lensemble de formation peuvent également être prédits !

Différentes méthodes présentent de grandes différences dans le nombre de jetons et le vocabulaire requis pour coder chaque nombre, mais dans l'ensemble, xVal a l'efficacité de codage la plus élevée et la plus petite taille de vocabulaire.

Les chercheurs ont également évalué xVal sur trois ensembles de données, notamment des données d'opérations arithmétiques synthétiques, des données de température globale et des données de simulation d'orbite planétaire.

Apprendre l'arithmétique

Même pour les plus grands LLM, la "multiplication à plusieurs chiffres" reste une tâche extrêmement difficile. Par exemple, GPT-4 n'atteint qu'une précision de 59 %, la précision sur quatre. -Les problèmes de multiplication à chiffres et à cinq chiffres ne sont que de 4% et 0%

1 jeton met fin au problème du codage numérique LLM ! Neuf grandes institutions ont publié conjointement xVal : les chiffres qui ne sont pas inclus dans lensemble de formation peuvent également être prédits !

D'après les expériences comparatives, d'autres encodages numériques peuvent généralement également très bien fonctionner. Cela résout bien les problèmes de multiplication à plusieurs chiffres, mais les résultats de prédiction. de xVal sont plus stables que P10 et FP15 et ne produiront pas de valeurs de prédiction anormales.

Afin d'augmenter la difficulté de la tâche, les chercheurs ont utilisé des arbres binaires aléatoires pour construire un ensemble de données en utilisant des opérateurs binaires d'addition, de soustraction et de multiplication pour combiner un nombre fixe d'opérandes (2, 3 ou 4), en où chaque échantillon est une expression arithmétique, par exemple ((1,32 * 32,1) + (1,42-8,20)) = 35,592

Ensuite, les échantillons sont traités selon les exigences de traitement de chaque schéma de codage numérique, et l'objectif de la tâche est pour calculer le côté gauche de l'équation L'expression de , c'est-à-dire le côté droit de l'équation est le masque.

1 jeton met fin au problème du codage numérique LLM ! Neuf grandes institutions ont publié conjointement xVal : les chiffres qui ne sont pas inclus dans lensemble de formation peuvent également être prédits !

À en juger par les résultats, xVal s'est très bien comporté dans cette tâche, mais les expériences arithmétiques seules ne suffisent pas pour évaluer pleinement les capacités mathématiques du modèle de langage, car les échantillons dans les opérations arithmétiques sont généralement des séquences courtes et la variété de données sous-jacente est faible. -dimensionnelles, ces problèmes ne surmontent pas le goulot d'étranglement informatique des LLM et les applications dans le monde réel sont plus complexes.

Prévision de la température

Les chercheurs ont utilisé un sous-ensemble de l'ensemble de données climatiques mondiales ERA5 pour l'évaluation, par souci de simplicité, seules les données de température de surface (T2m dans ERA5) ont été ciblées dans l'expérience, et Ensuite, les échantillons ont été divisés, chaque échantillon comprenant 2 à 4 jours de données sur la température de surface (normalisées pour avoir une variance unitaire) et la latitude et la longitude provenant de 60 à 90 stations de déclaration sélectionnées au hasard.

Encodez le sinus de la latitude et le sinus et le cosinus de la longitude de la coordonnée, préservant ainsi la périodicité des données, puis utilisez la même opération pour encoder la position dans les périodes de 24 heures et 365 jours .

1 jeton met fin au problème du codage numérique LLM ! Neuf grandes institutions ont publié conjointement xVal : les chiffres qui ne sont pas inclus dans lensemble de formation peuvent également être prédits !

Les coordonnées (coords), le point de départ (start) et les données (data) correspondent aux coordonnées de la station de reporting, à l'heure du premier échantillon et aux données de température normalisées, puis utilisez la méthode MLM pour vous entraîner le modèle de langage.

1 jeton met fin au problème du codage numérique LLM ! Neuf grandes institutions ont publié conjointement xVal : les chiffres qui ne sont pas inclus dans lensemble de formation peuvent également être prédits !

D'après les résultats, xVal a les meilleures performances, et le temps de calcul est également considérablement réduit.

1 jeton met fin au problème du codage numérique LLM ! Neuf grandes institutions ont publié conjointement xVal : les chiffres qui ne sont pas inclus dans lensemble de formation peuvent également être prédits !

Cette tâche illustre également les lacunes des schémas de codage basés sur du texte, le modèle peut exploiter de fausses corrélations dans les données, c'est-à-dire que P10, P1000 et B1999 ont tendance à prédire une température normalisée de ±0,1, principalement parce que ce nombre apparaît le plus fréquemment dans l’ensemble de données.

1 jeton met fin au problème du codage numérique LLM ! Neuf grandes institutions ont publié conjointement xVal : les chiffres qui ne sont pas inclus dans lensemble de formation peuvent également être prédits !

Pour les schémas P1000 et P10, la sortie d'encodage des deux schémas est respectivement d'environ 8 000 et 5 000 jetons (par rapport à la moyenne de FP15 et xVal d'environ 1 800 jetons), de mauvaises performances du modèle probablement dues aux problèmes de modélisation longue distance.

Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Déclaration de ce site Web
Le contenu de cet article est volontairement contribué par les internautes et les droits d'auteur appartiennent à l'auteur original. Ce site n'assume aucune responsabilité légale correspondante. Si vous trouvez un contenu suspecté de plagiat ou de contrefaçon, veuillez contacter admin@php.cn

Outils d'IA chauds

Undresser.AI Undress

Undresser.AI Undress

Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover

AI Clothes Remover

Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool

Undress AI Tool

Images de déshabillage gratuites

Clothoff.io

Clothoff.io

Dissolvant de vêtements AI

AI Hentai Generator

AI Hentai Generator

Générez AI Hentai gratuitement.

Article chaud

R.E.P.O. Crystals d'énergie expliqués et ce qu'ils font (cristal jaune)
3 Il y a quelques semaines By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Meilleurs paramètres graphiques
3 Il y a quelques semaines By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Comment réparer l'audio si vous n'entendez personne
3 Il y a quelques semaines By 尊渡假赌尊渡假赌尊渡假赌
WWE 2K25: Comment déverrouiller tout dans Myrise
3 Il y a quelques semaines By 尊渡假赌尊渡假赌尊渡假赌

Outils chauds

Bloc-notes++7.3.1

Bloc-notes++7.3.1

Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise

SublimeText3 version chinoise

Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1

Envoyer Studio 13.0.1

Puissant environnement de développement intégré PHP

Dreamweaver CS6

Dreamweaver CS6

Outils de développement Web visuel

SublimeText3 version Mac

SublimeText3 version Mac

Logiciel d'édition de code au niveau de Dieu (SublimeText3)

Quelle méthode est utilisée pour convertir les chaînes en objets dans vue.js? Quelle méthode est utilisée pour convertir les chaînes en objets dans vue.js? Apr 07, 2025 pm 09:39 PM

Lors de la conversion des chaînes en objets dans vue.js, JSON.Parse () est préféré pour les chaînes JSON standard. Pour les chaînes JSON non standard, la chaîne peut être traitée en utilisant des expressions régulières et réduisez les méthodes en fonction du format ou du codé décodé par URL. Sélectionnez la méthode appropriée en fonction du format de chaîne et faites attention aux problèmes de sécurité et d'encodage pour éviter les bogues.

Comment utiliser MySQL après l'installation Comment utiliser MySQL après l'installation Apr 08, 2025 am 11:48 AM

L'article présente le fonctionnement de la base de données MySQL. Tout d'abord, vous devez installer un client MySQL, tel que MySQLWorkBench ou le client de ligne de commande. 1. Utilisez la commande MySQL-UROot-P pour vous connecter au serveur et connecter avec le mot de passe du compte racine; 2. Utilisez Createdatabase pour créer une base de données et utilisez Sélectionner une base de données; 3. Utilisez CreateTable pour créer une table, définissez des champs et des types de données; 4. Utilisez InsertInto pour insérer des données, remettre en question les données, mettre à jour les données par mise à jour et supprimer les données par Supprimer. Ce n'est qu'en maîtrisant ces étapes, en apprenant à faire face à des problèmes courants et à l'optimisation des performances de la base de données que vous pouvez utiliser efficacement MySQL.

Vue.js Comment convertir un tableau de type de chaîne en un tableau d'objets? Vue.js Comment convertir un tableau de type de chaîne en un tableau d'objets? Apr 07, 2025 pm 09:36 PM

Résumé: Il existe les méthodes suivantes pour convertir les tableaux de chaîne Vue.js en tableaux d'objets: Méthode de base: utilisez la fonction de carte pour convenir à des données formatées régulières. Gameplay avancé: l'utilisation d'expressions régulières peut gérer des formats complexes, mais ils doivent être soigneusement écrits et considérés. Optimisation des performances: Considérant la grande quantité de données, des opérations asynchrones ou des bibliothèques efficaces de traitement des données peuvent être utilisées. MEILLEUR PRATIQUE: Effacer le style de code, utilisez des noms de variables significatifs et des commentaires pour garder le code concis.

Comment définir le délai de Vue Axios Comment définir le délai de Vue Axios Apr 07, 2025 pm 10:03 PM

Afin de définir le délai d'expiration de Vue Axios, nous pouvons créer une instance AxiOS et spécifier l'option Timeout: dans les paramètres globaux: vue.prototype. $ Axios = axios.create ({timeout: 5000}); Dans une seule demande: ce. $ axios.get ('/ api / utilisateurs', {timeout: 10000}).

Géospatial de Laravel: optimisation des cartes interactives et de grandes quantités de données Géospatial de Laravel: optimisation des cartes interactives et de grandes quantités de données Apr 08, 2025 pm 12:24 PM

Traiter efficacement 7 millions d'enregistrements et créer des cartes interactives avec la technologie géospatiale. Cet article explore comment traiter efficacement plus de 7 millions d'enregistrements en utilisant Laravel et MySQL et les convertir en visualisations de cartes interactives. Exigences initiales du projet de défi: extraire des informations précieuses en utilisant 7 millions d'enregistrements dans la base de données MySQL. Beaucoup de gens considèrent d'abord les langages de programmation, mais ignorent la base de données elle-même: peut-il répondre aux besoins? La migration des données ou l'ajustement structurel est-il requis? MySQL peut-il résister à une charge de données aussi importante? Analyse préliminaire: les filtres et les propriétés clés doivent être identifiés. Après analyse, il a été constaté que seuls quelques attributs étaient liés à la solution. Nous avons vérifié la faisabilité du filtre et établi certaines restrictions pour optimiser la recherche. Recherche de cartes basée sur la ville

Comment résoudre MySQL ne peut pas être démarré Comment résoudre MySQL ne peut pas être démarré Apr 08, 2025 pm 02:21 PM

Il existe de nombreuses raisons pour lesquelles la startup MySQL échoue, et elle peut être diagnostiquée en vérifiant le journal des erreurs. Les causes courantes incluent les conflits de port (vérifier l'occupation du port et la configuration de modification), les problèmes d'autorisation (vérifier le service exécutant les autorisations des utilisateurs), les erreurs de fichier de configuration (vérifier les paramètres des paramètres), la corruption du répertoire de données (restaurer les données ou reconstruire l'espace de la table), les problèmes d'espace de la table InNODB (vérifier les fichiers IBDATA1), la défaillance du chargement du plug-in (vérification du journal des erreurs). Lors de la résolution de problèmes, vous devez les analyser en fonction du journal d'erreur, trouver la cause profonde du problème et développer l'habitude de sauvegarder régulièrement les données pour prévenir et résoudre des problèmes.

Comment optimiser les performances de la base de données après l'installation de MySQL Comment optimiser les performances de la base de données après l'installation de MySQL Apr 08, 2025 am 11:36 AM

L'optimisation des performances MySQL doit commencer à partir de trois aspects: configuration d'installation, indexation et optimisation des requêtes, surveillance et réglage. 1. Après l'installation, vous devez ajuster le fichier my.cnf en fonction de la configuration du serveur, tel que le paramètre innodb_buffer_pool_size, et fermer query_cache_size; 2. Créez un index approprié pour éviter les index excessifs et optimiser les instructions de requête, telles que l'utilisation de la commande Explication pour analyser le plan d'exécution; 3. Utilisez le propre outil de surveillance de MySQL (ShowProcessList, Showstatus) pour surveiller la santé de la base de données, et sauvegarde régulièrement et organisez la base de données. Ce n'est qu'en optimisant en continu ces étapes que les performances de la base de données MySQL peuvent être améliorées.

Les ingénieurs de backend senior à distance (plates-formes) ont besoin de cercles Les ingénieurs de backend senior à distance (plates-formes) ont besoin de cercles Apr 08, 2025 pm 12:27 PM

Ingénieur backend à distance Emploi Vacant Société: Emplacement du cercle: Bureau à distance Type d'emploi: Salaire à temps plein: 130 000 $ - 140 000 $ Description du poste Participez à la recherche et au développement des applications mobiles Circle et des fonctionnalités publiques liées à l'API couvrant l'intégralité du cycle de vie de développement logiciel. Les principales responsabilités complètent indépendamment les travaux de développement basés sur RubyOnRails et collaborent avec l'équipe frontale React / Redux / Relay. Créez les fonctionnalités de base et les améliorations des applications Web et travaillez en étroite collaboration avec les concepteurs et le leadership tout au long du processus de conception fonctionnelle. Promouvoir les processus de développement positifs et hiérarchiser la vitesse d'itération. Nécessite plus de 6 ans de backend d'applications Web complexe

See all articles