Maison développement back-end Tutoriel Python La double puissance de ChatGPT et Python : comment construire des robots de recommandations personnalisés

La double puissance de ChatGPT et Python : comment construire des robots de recommandations personnalisés

Oct 24, 2023 pm 12:40 PM
python chatgpt double puissance

La double puissance de ChatGPT et Python : comment construire des robots de recommandations personnalisés

La double puissance de ChatGPT et Python : Comment construire un robot de recommandation personnalisé

Ces dernières années, le développement de la technologie de l'intelligence artificielle a progressé à pas de géant, parmi lesquels les progrès du traitement du langage naturel (NLP) et L'apprentissage automatique (ML) nous a aidé à élaborer des recommandations intelligentes. Les robots offrent d'énormes opportunités. Parmi les nombreux modèles de PNL, ChatGPT d’OpenAI a beaucoup attiré l’attention pour ses excellentes capacités de génération de dialogue. Dans le même temps, Python, en tant que langage de programmation puissant et facile à utiliser, fournit des outils et des bibliothèques pratiques pour prendre en charge l'apprentissage automatique et le développement de systèmes de recommandation. En combinant la double puissance de ChatGPT et de Python, nous pouvons créer un robot de recommandation personnalisé pour permettre aux utilisateurs de bénéficier de meilleurs services de recommandation.

Dans cet article, je présenterai la méthode de création d'un bot de recommandation personnalisé et fournirai des exemples de code Python spécifiques.

  1. Collecte et prétraitement des données
    La première étape dans la création d'un robot de recommandation personnalisé consiste à collecter et prétraiter les données pertinentes. Ces données peuvent être des enregistrements de conversations historiques d'utilisateurs, des données d'évaluation d'utilisateurs, des informations sur les produits, etc. Les données collectées doivent être nettoyées et organisées pour garantir la qualité et la cohérence des données.

Voici un exemple montrant comment utiliser Python pour traiter les données d'enregistrement des conversations des utilisateurs :

# 导入所需的库
import pandas as pd

# 读取对话记录数据
data = pd.read_csv('conversation_data.csv')

# 数据清洗和整理
# ...

# 数据预处理
# ...
Copier après la connexion
  1. Créer un modèle ChatGPT
    Ensuite, nous devons utiliser le modèle ChatGPT pour la génération de conversations. OpenAI fournit une version pré-entraînée du modèle GPT, et nous pouvons utiliser les bibliothèques pertinentes en Python pour charger et utiliser le modèle. Vous pouvez choisir de charger un modèle pré-entraîné ou d'entraîner le modèle vous-même pour l'adapter à une tâche spécifique.

Voici un exemple montrant comment charger un modèle ChatGPT à l'aide de Python :

# 导入所需的库
from transformers import GPT2LMHeadModel, GPT2Tokenizer

# 加载ChatGPT模型
model_name = 'gpt2'  # 预训练模型的名称
model = GPT2LMHeadModel.from_pretrained(model_name)
tokenizer = GPT2Tokenizer.from_pretrained(model_name)

# 对话生成函数
def generate_response(input_text):
    input_ids = tokenizer.encode(input_text, return_tensors='pt')
    output = model.generate(input_ids, max_length=100, num_return_sequences=1)
    response = tokenizer.decode(output[0])
    return response

# 调用对话生成函数
user_input = "你好,有什么推荐吗?"
response = generate_response(user_input)
print(response)
Copier après la connexion
  1. Modélisation de l'utilisateur et recommandations personnalisées
    Afin d'obtenir des recommandations personnalisées, nous devons modéliser en fonction du comportement historique et des commentaires de l'utilisateur. En analysant les enregistrements de conversations des utilisateurs, les données d'évaluation et d'autres informations, nous pouvons comprendre les intérêts et les préférences des utilisateurs et leur fournir des recommandations personnalisées.

Ce qui suit est un exemple montrant comment utiliser Python pour créer une fonction simple de modélisation et de recommandation d'utilisateurs :

# 用户建模和推荐函数
def recommend(user_id):
    # 基于用户历史对话记录和评分数据进行用户建模
    user_model = build_user_model(user_id)

    # 基于用户模型进行个性化推荐
    recommendations = make_recommendations(user_model)

    return recommendations

# 调用推荐函数
user_id = '12345'
recommended_items = recommend(user_id)
print(recommended_items)
Copier après la connexion
  1. Déploiement et optimisation
    Enfin, nous devons déployer le robot de recommandation personnalisé dans l'environnement d'application réel et effectuer une optimisation continue. et amélioration. Vous pouvez utiliser le framework Web de Python (tel que Flask) pour créer une API permettant au robot d'interagir avec les utilisateurs. Dans le même temps, nous pouvons améliorer continuellement les algorithmes et les modèles de recommandation en surveillant les commentaires des utilisateurs et en évaluant les effets des recommandations.

Les détails spécifiques du déploiement et de l'optimisation du projet dépassent le cadre de cet article, mais grâce au riche écosystème de Python, nous pouvons accomplir ces tâches facilement.

Résumé :
En combinant la double puissance de ChatGPT et de Python, nous pouvons créer un bot de recommandation puissant et personnalisé. En collectant et en prétraitant les données, en utilisant le modèle ChatGPT pour la génération de dialogues, en modélisant les préférences et les comportements des utilisateurs et en faisant des recommandations personnalisées basées sur des modèles d'utilisateurs, nous pouvons fournir des services de recommandation hautement personnalisés. Dans le même temps, Python, en tant que langage de programmation flexible et puissant, nous offre une multitude d'outils et de bibliothèques pour prendre en charge l'apprentissage automatique et le développement de systèmes de recommandation.

Grâce à une recherche et à une amélioration continues, nous pouvons optimiser davantage les performances et l'expérience utilisateur du robot de recommandation personnalisé, et fournir aux utilisateurs des services de recommandation plus précis et intéressants.

Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Déclaration de ce site Web
Le contenu de cet article est volontairement contribué par les internautes et les droits d'auteur appartiennent à l'auteur original. Ce site n'assume aucune responsabilité légale correspondante. Si vous trouvez un contenu suspecté de plagiat ou de contrefaçon, veuillez contacter admin@php.cn

Outils d'IA chauds

Undresser.AI Undress

Undresser.AI Undress

Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover

AI Clothes Remover

Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool

Undress AI Tool

Images de déshabillage gratuites

Clothoff.io

Clothoff.io

Dissolvant de vêtements AI

AI Hentai Generator

AI Hentai Generator

Générez AI Hentai gratuitement.

Article chaud

R.E.P.O. Crystals d'énergie expliqués et ce qu'ils font (cristal jaune)
4 Il y a quelques semaines By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Meilleurs paramètres graphiques
4 Il y a quelques semaines By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Comment réparer l'audio si vous n'entendez personne
4 Il y a quelques semaines By 尊渡假赌尊渡假赌尊渡假赌
WWE 2K25: Comment déverrouiller tout dans Myrise
1 Il y a quelques mois By 尊渡假赌尊渡假赌尊渡假赌

Outils chauds

Bloc-notes++7.3.1

Bloc-notes++7.3.1

Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise

SublimeText3 version chinoise

Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1

Envoyer Studio 13.0.1

Puissant environnement de développement intégré PHP

Dreamweaver CS6

Dreamweaver CS6

Outils de développement Web visuel

SublimeText3 version Mac

SublimeText3 version Mac

Logiciel d'édition de code au niveau de Dieu (SublimeText3)

HaDIDB: une base de données légère et évolutive horizontalement dans Python HaDIDB: une base de données légère et évolutive horizontalement dans Python Apr 08, 2025 pm 06:12 PM

HaDIDB: Une base de données Python évolutive de haut niveau légère HaDIDB (HaDIDB) est une base de données légère écrite en Python, avec un niveau élevé d'évolutivité. Installez HaDIDB à l'aide de l'installation PIP: PiPinStallHaDIDB User Management Créer un utilisateur: CreateUser () pour créer un nouvel utilisateur. La méthode Authentication () authentifie l'identité de l'utilisateur. FromHadidb.OperationMportUserUser_OBJ = User ("Admin", "Admin") User_OBJ.

Le plan Python de 2 heures: une approche réaliste Le plan Python de 2 heures: une approche réaliste Apr 11, 2025 am 12:04 AM

Vous pouvez apprendre les concepts de programmation de base et les compétences de Python dans les 2 heures. 1. Apprenez les variables et les types de données, 2. Flux de contrôle maître (instructions et boucles conditionnelles), 3. Comprenez la définition et l'utilisation des fonctions, 4. Démarrez rapidement avec la programmation Python via des exemples simples et des extraits de code.

Méthode de Navicat pour afficher le mot de passe de la base de données MongoDB Méthode de Navicat pour afficher le mot de passe de la base de données MongoDB Apr 08, 2025 pm 09:39 PM

Il est impossible de visualiser le mot de passe MongoDB directement via NAVICAT car il est stocké sous forme de valeurs de hachage. Comment récupérer les mots de passe perdus: 1. Réinitialiser les mots de passe; 2. Vérifiez les fichiers de configuration (peut contenir des valeurs de hachage); 3. Vérifiez les codes (May Code Hardcode).

Python: Explorer ses applications principales Python: Explorer ses applications principales Apr 10, 2025 am 09:41 AM

Python est largement utilisé dans les domaines du développement Web, de la science des données, de l'apprentissage automatique, de l'automatisation et des scripts. 1) Dans le développement Web, les cadres Django et Flask simplifient le processus de développement. 2) Dans les domaines de la science des données et de l'apprentissage automatique, les bibliothèques Numpy, Pandas, Scikit-Learn et Tensorflow fournissent un fort soutien. 3) En termes d'automatisation et de script, Python convient aux tâches telles que les tests automatisés et la gestion du système.

Comment utiliser Aws Glue Crawler avec Amazon Athena Comment utiliser Aws Glue Crawler avec Amazon Athena Apr 09, 2025 pm 03:09 PM

En tant que professionnel des données, vous devez traiter de grandes quantités de données provenant de diverses sources. Cela peut poser des défis à la gestion et à l'analyse des données. Heureusement, deux services AWS peuvent aider: AWS Glue et Amazon Athena.

Comment optimiser les performances MySQL pour les applications de haute charge? Comment optimiser les performances MySQL pour les applications de haute charge? Apr 08, 2025 pm 06:03 PM

Guide d'optimisation des performances de la base de données MySQL dans les applications à forte intensité de ressources, la base de données MySQL joue un rôle crucial et est responsable de la gestion des transactions massives. Cependant, à mesure que l'échelle de l'application se développe, les goulots d'étranglement des performances de la base de données deviennent souvent une contrainte. Cet article explorera une série de stratégies efficaces d'optimisation des performances MySQL pour garantir que votre application reste efficace et réactive dans des charges élevées. Nous combinerons des cas réels pour expliquer les technologies clés approfondies telles que l'indexation, l'optimisation des requêtes, la conception de la base de données et la mise en cache. 1. La conception de l'architecture de la base de données et l'architecture optimisée de la base de données sont la pierre angulaire de l'optimisation des performances MySQL. Voici quelques principes de base: sélectionner le bon type de données et sélectionner le plus petit type de données qui répond aux besoins peut non seulement économiser un espace de stockage, mais également améliorer la vitesse de traitement des données.

Comment démarrer le serveur avec redis Comment démarrer le serveur avec redis Apr 10, 2025 pm 08:12 PM

Les étapes pour démarrer un serveur Redis incluent: Installez Redis en fonction du système d'exploitation. Démarrez le service Redis via Redis-Server (Linux / MacOS) ou Redis-Server.exe (Windows). Utilisez la commande redis-Cli Ping (Linux / MacOS) ou redis-Cli.exe Ping (Windows) pour vérifier l'état du service. Utilisez un client redis, tel que redis-cli, python ou node.js pour accéder au serveur.

Comment lire la file d'attente redis Comment lire la file d'attente redis Apr 10, 2025 pm 10:12 PM

Pour lire une file d'attente à partir de Redis, vous devez obtenir le nom de la file d'attente, lire les éléments à l'aide de la commande LPOP et traiter la file d'attente vide. Les étapes spécifiques sont les suivantes: Obtenez le nom de la file d'attente: Nommez-le avec le préfixe de "Fitre:" tel que "Fitre: My-Quyue". Utilisez la commande LPOP: éjectez l'élément de la tête de la file d'attente et renvoyez sa valeur, telle que la file d'attente LPOP: My-Queue. Traitement des files d'attente vides: si la file d'attente est vide, LPOP renvoie NIL et vous pouvez vérifier si la file d'attente existe avant de lire l'élément.

See all articles