


Comment utiliser ChatGPT et Python pour implémenter la fonction de conversation multimodale
Comment utiliser ChatGPT et Python pour implémenter la fonction de dialogue multimodal
Aperçu :
Avec le développement de la technologie de l'intelligence artificielle, le dialogue multimodal est progressivement devenu un point chaud dans la recherche et les applications. Les conversations multimodales incluent non seulement les conversations textuelles, mais également la communication via diverses formes médiatiques telles que les images, l'audio et la vidéo. Cet article expliquera comment utiliser ChatGPT et Python pour implémenter des fonctions de dialogue multimodales et fournira des exemples de code correspondants.
- Préparer le modèle ChatGPT
Tout d'abord, nous devons préparer le modèle ChatGPT. Les modèles ChatGPT pré-entraînés peuvent être téléchargés et chargés à l'aide de la bibliothèque de transformateurs de Hugging Face. Par exemple, le code suivant peut être utilisé pour charger le modèle ChatGPT :
from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "microsoft/DialoGPT-medium" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name)
- Traitement des entrées multimodales
Les conversations multimodales doivent traiter différents types d'entrées, tels que le texte, les images et l'audio, etc. Nous pouvons utiliser différentes bibliothèques pour gérer ces différents types de données. Dans cet article, nous utiliserons la bibliothèque Pillow pour traiter les images et la bibliothèque librosa pour traiter l'audio.
Tout d’abord, voyons comment traiter les images. Supposons que nous voulions transmettre une image en entrée à la conversation. Nous pouvons utiliser le code suivant pour convertir l'image dans le format d'entrée requis par le modèle pré-entraîné :
from PIL import Image def process_image(image_path): image = Image.open(image_path) # 将图像转换为模型所需的输入格式 # 对于ChatGPT,一般是将图像编码为Base64格式的字符串 image_base64 = image_to_base64(image) return image_base64
Pour le traitement audio, nous pouvons utiliser la bibliothèque librosa pour convertir le fichier audio au format d'entrée requis par le modèle. Voici un exemple de code :
import librosa def process_audio(audio_path): # 使用librosa库读取音频文件 audio, sr = librosa.load(audio_path, sr=None) # 将音频文件转换为模型所需的输入格式 return audio.tolist()
- Créer une conversation multimodale
Après avoir traité différents types de données d'entrée, nous pouvons exploiter ChatGPT pour mener une conversation multimodale. Voici un exemple de code de base qui montre comment créer un système de dialogue multimodal simple :
def chat(model, tokenizer, text_input, image_input, audio_input): # 将输入数据编码为模型所需的输入格式 text_input_ids = tokenizer.encode(text_input, return_tensors="pt") image_input_base64 = process_image(image_input) audio_input = process_audio(audio_input) # 将输入数据与模型所需的输入格式拼接起来 input_data = { "input_ids": text_input_ids, "image_input": image_input_base64, "audio_input": audio_input } # 使用模型进行多模态对话 output = model.generate(**input_data, max_length=50) # 对模型生成的输出进行解码 response = tokenizer.decode(output[0], skip_special_tokens=True) return response
Dans le code ci-dessus, nous codons d'abord l'entrée de texte avec l'entrée d'image et l'entrée audio dans le format d'entrée requis par le modèle. , Appelez ensuite la méthode generate
du modèle pour générer la sortie du modèle. Enfin, nous décodons la sortie et renvoyons la réponse du système de dialogue.
- Résumé
Cet article explique comment utiliser ChatGPT et Python pour implémenter des fonctions de conversation multimodales et fournit des exemples de code correspondants. Dans les applications pratiques, le code peut être adapté et étendu selon les besoins pour répondre à des besoins spécifiques de conversation multimodale. La technologie de dialogue multimodal a de larges perspectives d'application et peut être utilisée dans une variété de scénarios tels que les assistants intelligents, le service client virtuel et les robots. En tirant parti de ChatGPT et Python, nous pouvons facilement créer un système de dialogue multimodal efficace.
Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Outils d'IA chauds

Undresser.AI Undress
Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover
Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool
Images de déshabillage gratuites

Clothoff.io
Dissolvant de vêtements AI

AI Hentai Generator
Générez AI Hentai gratuitement.

Article chaud

Outils chauds

Bloc-notes++7.3.1
Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise
Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1
Puissant environnement de développement intégré PHP

Dreamweaver CS6
Outils de développement Web visuel

SublimeText3 version Mac
Logiciel d'édition de code au niveau de Dieu (SublimeText3)

PHP et Python ont leurs propres avantages et inconvénients, et le choix dépend des besoins du projet et des préférences personnelles. 1.Php convient au développement rapide et à la maintenance des applications Web à grande échelle. 2. Python domine le domaine de la science des données et de l'apprentissage automatique.

Python et JavaScript ont leurs propres avantages et inconvénients en termes de communauté, de bibliothèques et de ressources. 1) La communauté Python est amicale et adaptée aux débutants, mais les ressources de développement frontal ne sont pas aussi riches que JavaScript. 2) Python est puissant dans les bibliothèques de science des données et d'apprentissage automatique, tandis que JavaScript est meilleur dans les bibliothèques et les cadres de développement frontaux. 3) Les deux ont des ressources d'apprentissage riches, mais Python convient pour commencer par des documents officiels, tandis que JavaScript est meilleur avec MDNWEBDOCS. Le choix doit être basé sur les besoins du projet et les intérêts personnels.

Activer l'accélération du GPU Pytorch sur le système CentOS nécessite l'installation de versions CUDA, CUDNN et GPU de Pytorch. Les étapes suivantes vous guideront tout au long du processus: CUDA et CUDNN Installation détermineront la compatibilité de la version CUDA: utilisez la commande NVIDIA-SMI pour afficher la version CUDA prise en charge par votre carte graphique NVIDIA. Par exemple, votre carte graphique MX450 peut prendre en charge CUDA11.1 ou plus. Téléchargez et installez Cudatoolkit: visitez le site officiel de Nvidiacudatoolkit et téléchargez et installez la version correspondante selon la version CUDA la plus élevée prise en charge par votre carte graphique. Installez la bibliothèque CUDNN:

Docker utilise les fonctionnalités du noyau Linux pour fournir un environnement de fonctionnement d'application efficace et isolé. Son principe de travail est le suivant: 1. Le miroir est utilisé comme modèle en lecture seule, qui contient tout ce dont vous avez besoin pour exécuter l'application; 2. Le Système de fichiers Union (UnionFS) empile plusieurs systèmes de fichiers, ne stockant que les différences, l'économie d'espace et l'accélération; 3. Le démon gère les miroirs et les conteneurs, et le client les utilise pour l'interaction; 4. Les espaces de noms et les CGROUP implémentent l'isolement des conteneurs et les limitations de ressources; 5. Modes de réseau multiples prennent en charge l'interconnexion du conteneur. Ce n'est qu'en comprenant ces concepts principaux que vous pouvez mieux utiliser Docker.

Minio Object Storage: Déploiement haute performance dans le système Centos System Minio est un système de stockage d'objets distribué haute performance développé sur la base du langage Go, compatible avec Amazons3. Il prend en charge une variété de langages clients, notamment Java, Python, JavaScript et GO. Cet article introduira brièvement l'installation et la compatibilité de Minio sur les systèmes CentOS. Compatibilité de la version CentOS Minio a été vérifiée sur plusieurs versions CentOS, y compris, mais sans s'y limiter: CentOS7.9: fournit un guide d'installation complet couvrant la configuration du cluster, la préparation de l'environnement, les paramètres de fichiers de configuration, le partitionnement du disque et la mini

La formation distribuée par Pytorch sur le système CentOS nécessite les étapes suivantes: Installation de Pytorch: La prémisse est que Python et PIP sont installés dans le système CentOS. Selon votre version CUDA, obtenez la commande d'installation appropriée sur le site officiel de Pytorch. Pour la formation du processeur uniquement, vous pouvez utiliser la commande suivante: pipinstalltorchtorchVisionTorChaudio Si vous avez besoin d'une prise en charge du GPU, assurez-vous que la version correspondante de CUDA et CUDNN est installée et utilise la version Pytorch correspondante pour l'installation. Configuration de l'environnement distribué: la formation distribuée nécessite généralement plusieurs machines ou des GPU multiples uniques. Lieu

Lors de l'installation de Pytorch sur le système CentOS, vous devez sélectionner soigneusement la version appropriée et considérer les facteurs clés suivants: 1. Compatibilité de l'environnement du système: Système d'exploitation: Il est recommandé d'utiliser CentOS7 ou plus. CUDA et CUDNN: La version Pytorch et la version CUDA sont étroitement liées. Par exemple, Pytorch1.9.0 nécessite CUDA11.1, tandis que Pytorch2.0.1 nécessite CUDA11.3. La version CUDNN doit également correspondre à la version CUDA. Avant de sélectionner la version Pytorch, assurez-vous de confirmer que des versions compatibles CUDA et CUDNN ont été installées. Version Python: branche officielle de Pytorch

La mise à jour de Pytorch vers la dernière version sur CentOS peut suivre les étapes suivantes: Méthode 1: Mise à jour de PIP avec PIP: Assurez-vous d'abord que votre PIP est la dernière version, car les anciennes versions de PIP peuvent ne pas être en mesure d'installer correctement la dernière version de Pytorch. pipinstall-upradepip désinstalle ancienne version de Pytorch (si installé): PipuninstallTorchtorchVisiontorchaudio installation dernier
