Comment utiliser ChatGPT et Python pour implémenter la fonction de dialogue multimodal
Aperçu :
Avec le développement de la technologie de l'intelligence artificielle, le dialogue multimodal est progressivement devenu un point chaud dans la recherche et les applications. Les conversations multimodales incluent non seulement les conversations textuelles, mais également la communication via diverses formes médiatiques telles que les images, l'audio et la vidéo. Cet article expliquera comment utiliser ChatGPT et Python pour implémenter des fonctions de dialogue multimodales et fournira des exemples de code correspondants.
from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "microsoft/DialoGPT-medium" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name)
Tout d’abord, voyons comment traiter les images. Supposons que nous voulions transmettre une image en entrée à la conversation. Nous pouvons utiliser le code suivant pour convertir l'image dans le format d'entrée requis par le modèle pré-entraîné :
from PIL import Image def process_image(image_path): image = Image.open(image_path) # 将图像转换为模型所需的输入格式 # 对于ChatGPT,一般是将图像编码为Base64格式的字符串 image_base64 = image_to_base64(image) return image_base64
Pour le traitement audio, nous pouvons utiliser la bibliothèque librosa pour convertir le fichier audio au format d'entrée requis par le modèle. Voici un exemple de code :
import librosa def process_audio(audio_path): # 使用librosa库读取音频文件 audio, sr = librosa.load(audio_path, sr=None) # 将音频文件转换为模型所需的输入格式 return audio.tolist()
def chat(model, tokenizer, text_input, image_input, audio_input): # 将输入数据编码为模型所需的输入格式 text_input_ids = tokenizer.encode(text_input, return_tensors="pt") image_input_base64 = process_image(image_input) audio_input = process_audio(audio_input) # 将输入数据与模型所需的输入格式拼接起来 input_data = { "input_ids": text_input_ids, "image_input": image_input_base64, "audio_input": audio_input } # 使用模型进行多模态对话 output = model.generate(**input_data, max_length=50) # 对模型生成的输出进行解码 response = tokenizer.decode(output[0], skip_special_tokens=True) return response
Dans le code ci-dessus, nous codons d'abord l'entrée de texte avec l'entrée d'image et l'entrée audio dans le format d'entrée requis par le modèle. , Appelez ensuite la méthode generate
du modèle pour générer la sortie du modèle. Enfin, nous décodons la sortie et renvoyons la réponse du système de dialogue.
Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!