


Comment utiliser ChatGPT et Python pour créer un système de recommandation intelligent
Comment utiliser ChatGPT et Python pour créer un système de recommandation intelligent
Le système de recommandation est une technologie largement utilisée dans les applications Internet actuelles. Il peut recommander des contenus et des produits personnalisés aux utilisateurs en fonction de leurs intérêts et de leurs données comportementales. ChatGPT est un modèle d'apprentissage automatique basé sur l'intelligence artificielle et axé sur la génération de conversations. En combinant ChatGPT et Python, nous pouvons mettre en œuvre un système de recommandation intelligent pour fournir aux utilisateurs des recommandations plus précises et personnalisées.
Étape 1 : Collecte et prétraitement des données
Tout d'abord, nous devons collecter et préparer les données requises pour le système de recommandation. Ces données peuvent être des données historiques sur le comportement des utilisateurs, des données d'informations sur les produits, etc. En fonction des besoins réels, nous devrons peut-être nettoyer, formater et convertir les données pour faciliter le traitement ultérieur et la formation du modèle.
Étape 2 : Créer le modèle ChatGPT
Ensuite, nous devons utiliser Python pour créer le modèle ChatGPT. Vous pouvez utiliser des bibliothèques open source telles que le SDK GPT-3 d'OpenAI pour mettre en œuvre rapidement cette étape. En appelant l'API de ChatGPT, nous pouvons utiliser la saisie de l'utilisateur comme question, puis utiliser les résultats générés par ChatGPT comme réponses recommandées.
Ce qui suit est un exemple de code simple qui utilise Python pour appeler ChatGPT afin de répondre aux questions :
import openai openai.api_key = 'your_api_key' def chat_with_gpt(question): response = openai.Completion.create( engine='text-davinci-002', prompt=question, max_tokens=100, temperature=0.6, n=1, stop=None, log_level='info', ) answer = response.choices[0].text.strip() return answer # 调用ChatGPT回答问题 question = '你能推荐一些适合我看的电影吗?' answer = chat_with_gpt(question) print(answer)
Étape 3 : Conception de la logique de recommandation
Après avoir obtenu la réponse de ChatGPT, nous devons concevoir la logique de recommandation en fonction du contenu de la réponse. . En fonction des besoins spécifiques de recommandation, les facteurs suivants peuvent être pris en compte :
- Comportement historique de l'utilisateur : recommander un contenu ou des produits similaires en fonction de l'historique de navigation et des enregistrements d'achats de l'utilisateur.
- Balises d'intérêt de l'utilisateur : recommandez du contenu ou des produits liés aux intérêts de l'utilisateur en fonction des balises d'intérêt de l'utilisateur.
- Recommandations populaires : recommandez du contenu ou des produits populaires aux utilisateurs en fonction du contenu ou des produits populaires actuels.
- Recommandation de partenaires : fournissez aux utilisateurs du contenu ou des produits pertinents en fonction des informations de recommandation fournies par les partenaires.
En fonction des besoins réels, nous pouvons combiner les facteurs ci-dessus pour concevoir notre logique de recommandation.
Étape 4 : Intégrer ChatGPT et la logique de recommandation
Enfin, nous intégrons les réponses et la logique de recommandation de ChatGPT pour former un système de recommandation intelligent complet. Selon la question saisie par l'utilisateur, ChatGPT est d'abord appelé pour générer une réponse, puis, sur la base de la réponse générée et combinée à la logique de recommandation, le contenu ou le produit correspondant est recommandé à l'utilisateur.
Ce qui suit est un exemple de code qui utilise Python pour intégrer ChatGPT et la logique de recommandation :
def recommend_content(question): answer = chat_with_gpt(question) # 根据生成的回答,结合推荐逻辑,给用户推荐相关的内容或产品 # TODO: 实现推荐逻辑 return recommendation # 调用ChatGPT和推荐逻辑来推荐内容 question = '你能推荐一些适合我看的电影吗?' recommendation = recommend_content(question) print(recommendation)
L'exemple de code ci-dessus n'est qu'une simple référence et doit être ajusté et optimisé en fonction des besoins spécifiques des applications réelles.
Résumé
En combinant ChatGPT et Python, nous pouvons mettre en œuvre un système de recommandation intelligent pour fournir aux utilisateurs des recommandations personnalisées. Les étapes clés comprennent la collecte et le prétraitement des données, la création d'un modèle ChatGPT, la recommandation d'une conception logique et l'intégration de ChatGPT et de la logique de recommandation. Grâce à une optimisation et une itération continues, nous pouvons créer un système de recommandation plus précis et plus intelligent pour améliorer l'expérience et la satisfaction des utilisateurs.
Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Outils d'IA chauds

Undresser.AI Undress
Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover
Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool
Images de déshabillage gratuites

Clothoff.io
Dissolvant de vêtements AI

AI Hentai Generator
Générez AI Hentai gratuitement.

Article chaud

Outils chauds

Bloc-notes++7.3.1
Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise
Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1
Puissant environnement de développement intégré PHP

Dreamweaver CS6
Outils de développement Web visuel

SublimeText3 version Mac
Logiciel d'édition de code au niveau de Dieu (SublimeText3)

MySQL a une version communautaire gratuite et une version d'entreprise payante. La version communautaire peut être utilisée et modifiée gratuitement, mais le support est limité et convient aux applications avec des exigences de stabilité faibles et des capacités techniques solides. L'Enterprise Edition fournit une prise en charge commerciale complète pour les applications qui nécessitent une base de données stable, fiable et haute performance et disposées à payer pour le soutien. Les facteurs pris en compte lors du choix d'une version comprennent la criticité des applications, la budgétisation et les compétences techniques. Il n'y a pas d'option parfaite, seulement l'option la plus appropriée, et vous devez choisir soigneusement en fonction de la situation spécifique.

L'article présente le fonctionnement de la base de données MySQL. Tout d'abord, vous devez installer un client MySQL, tel que MySQLWorkBench ou le client de ligne de commande. 1. Utilisez la commande MySQL-UROot-P pour vous connecter au serveur et connecter avec le mot de passe du compte racine; 2. Utilisez Createdatabase pour créer une base de données et utilisez Sélectionner une base de données; 3. Utilisez CreateTable pour créer une table, définissez des champs et des types de données; 4. Utilisez InsertInto pour insérer des données, remettre en question les données, mettre à jour les données par mise à jour et supprimer les données par Supprimer. Ce n'est qu'en maîtrisant ces étapes, en apprenant à faire face à des problèmes courants et à l'optimisation des performances de la base de données que vous pouvez utiliser efficacement MySQL.

Les principales raisons de la défaillance de l'installation de MySQL sont les suivantes: 1. Problèmes d'autorisation, vous devez s'exécuter en tant qu'administrateur ou utiliser la commande sudo; 2. Des dépendances sont manquantes et vous devez installer des packages de développement pertinents; 3. Conflits du port, vous devez fermer le programme qui occupe le port 3306 ou modifier le fichier de configuration; 4. Le package d'installation est corrompu, vous devez télécharger et vérifier l'intégrité; 5. La variable d'environnement est mal configurée et les variables d'environnement doivent être correctement configurées en fonction du système d'exploitation. Résolvez ces problèmes et vérifiez soigneusement chaque étape pour installer avec succès MySQL.

Le fichier de téléchargement mysql est corrompu, que dois-je faire? Hélas, si vous téléchargez MySQL, vous pouvez rencontrer la corruption des fichiers. Ce n'est vraiment pas facile ces jours-ci! Cet article expliquera comment résoudre ce problème afin que tout le monde puisse éviter les détours. Après l'avoir lu, vous pouvez non seulement réparer le package d'installation MySQL endommagé, mais aussi avoir une compréhension plus approfondie du processus de téléchargement et d'installation pour éviter de rester coincé à l'avenir. Parlons d'abord de la raison pour laquelle le téléchargement des fichiers est endommagé. Il y a de nombreuses raisons à cela. Les problèmes de réseau sont le coupable. L'interruption du processus de téléchargement et l'instabilité du réseau peut conduire à la corruption des fichiers. Il y a aussi le problème avec la source de téléchargement elle-même. Le fichier serveur lui-même est cassé, et bien sûr, il est également cassé si vous le téléchargez. De plus, la numérisation excessive "passionnée" de certains logiciels antivirus peut également entraîner une corruption des fichiers. Problème de diagnostic: déterminer si le fichier est vraiment corrompu

MySQL a refusé de commencer? Ne paniquez pas, vérifions-le! De nombreux amis ont découvert que le service ne pouvait pas être démarré après avoir installé MySQL, et ils étaient si anxieux! Ne vous inquiétez pas, cet article vous emmènera pour le faire face calmement et découvrez le cerveau derrière! Après l'avoir lu, vous pouvez non seulement résoudre ce problème, mais aussi améliorer votre compréhension des services MySQL et vos idées de problèmes de dépannage, et devenir un administrateur de base de données plus puissant! Le service MySQL n'a pas réussi et il y a de nombreuses raisons, allant des erreurs de configuration simples aux problèmes système complexes. Commençons par les aspects les plus courants. Connaissances de base: une brève description du processus de démarrage du service MySQL Service Startup. Autrement dit, le système d'exploitation charge les fichiers liés à MySQL, puis démarre le démon mysql. Cela implique la configuration

L'optimisation des performances MySQL doit commencer à partir de trois aspects: configuration d'installation, indexation et optimisation des requêtes, surveillance et réglage. 1. Après l'installation, vous devez ajuster le fichier my.cnf en fonction de la configuration du serveur, tel que le paramètre innodb_buffer_pool_size, et fermer query_cache_size; 2. Créez un index approprié pour éviter les index excessifs et optimiser les instructions de requête, telles que l'utilisation de la commande Explication pour analyser le plan d'exécution; 3. Utilisez le propre outil de surveillance de MySQL (ShowProcessList, Showstatus) pour surveiller la santé de la base de données, et sauvegarde régulièrement et organisez la base de données. Ce n'est qu'en optimisant en continu ces étapes que les performances de la base de données MySQL peuvent être améliorées.

MySQL peut s'exécuter sans connexions réseau pour le stockage et la gestion des données de base. Cependant, la connexion réseau est requise pour l'interaction avec d'autres systèmes, l'accès à distance ou l'utilisation de fonctionnalités avancées telles que la réplication et le clustering. De plus, les mesures de sécurité (telles que les pare-feu), l'optimisation des performances (choisissez la bonne connexion réseau) et la sauvegarde des données sont essentielles pour se connecter à Internet.

Guide d'optimisation des performances de la base de données MySQL dans les applications à forte intensité de ressources, la base de données MySQL joue un rôle crucial et est responsable de la gestion des transactions massives. Cependant, à mesure que l'échelle de l'application se développe, les goulots d'étranglement des performances de la base de données deviennent souvent une contrainte. Cet article explorera une série de stratégies efficaces d'optimisation des performances MySQL pour garantir que votre application reste efficace et réactive dans des charges élevées. Nous combinerons des cas réels pour expliquer les technologies clés approfondies telles que l'indexation, l'optimisation des requêtes, la conception de la base de données et la mise en cache. 1. La conception de l'architecture de la base de données et l'architecture optimisée de la base de données sont la pierre angulaire de l'optimisation des performances MySQL. Voici quelques principes de base: sélectionner le bon type de données et sélectionner le plus petit type de données qui répond aux besoins peut non seulement économiser un espace de stockage, mais également améliorer la vitesse de traitement des données.
