


Comment utiliser les E/S asynchrones et les coroutines en Python pour implémenter un système de planification de tâches distribuées hautement concurrent
Comment utiliser les E/S asynchrones et les coroutines en Python pour implémenter un système de planification de tâches distribuées hautement concurrent
À l'ère de l'information en développement rapide d'aujourd'hui, les systèmes distribués deviennent de plus en plus courants. Les systèmes de planification de tâches à haute concurrence sont également devenus un élément indispensable dans de nombreuses entreprises et organisations. Cet article prend Python comme exemple pour présenter comment utiliser les E/S asynchrones et les coroutines pour implémenter un système de planification de tâches distribuées hautement concurrent.
Les systèmes de planification de tâches distribuées comprennent généralement les composants de base suivants :
- Planificateur de tâches : responsable de la distribution des tâches aux différents nœuds d'exécution et du suivi de l'exécution des tâches.
- Nœud d'exécution : responsable de la réception des tâches et de l'exécution de la logique spécifique des tâches.
- File d'attente des tâches : utilisée pour stocker les tâches à exécuter.
- File d'attente des résultats des tâches : utilisée pour stocker les résultats des tâches exécutées.
Afin d'atteindre une concurrence élevée, nous utilisons des IO asynchrones et des coroutines pour créer un système de planification de tâches distribué. Tout d'abord, nous choisissons un framework IO asynchrone approprié, tel que asyncio
en Python. Ensuite, la collaboration entre les différents composants est réalisée en définissant des fonctions de coroutine. asyncio
。然后,通过定义协程函数来实现不同组件之间的协作。
在任务调度器中,我们可以使用协程来处理任务的分发和监控。下面是一个简单的示例代码:
import asyncio async def task_scheduler(tasks): while tasks: task = tasks.pop() # 将任务发送给执行节点 result = await execute_task(task) # 处理任务的执行结果 process_result(result) async def execute_task(task): # 在这里执行具体的任务逻辑 pass def process_result(result): # 在这里处理任务的执行结果 pass if __name__ == '__main__': tasks = ['task1', 'task2', 'task3'] loop = asyncio.get_event_loop() loop.run_until_complete(task_scheduler(tasks))
在执行节点中,我们可以使用协程来接收任务并执行。下面是一个简单的示例代码:
import asyncio async def task_executor(): while True: task = await receive_task() # 执行任务的具体逻辑 result = await execute_task(task) # 将任务执行结果发送回任务结果队列 await send_result(result) async def receive_task(): # 在这里接收任务 pass async def execute_task(task): # 在这里执行具体的任务逻辑 pass async def send_result(result): # 在这里发送任务执行结果 pass if __name__ == '__main__': loop = asyncio.get_event_loop() loop.run_until_complete(task_executor())
在以上示例代码中,asyncio
提供了async
和await
关键字,用于定义协程函数和在协程中等待其他协程的执行结果。通过将任务调度器和执行节点中的任务处理逻辑定义为协程函数,我们可以利用异步IO和协程的特性,实现高并发的分布式任务调度系统。
除了任务调度器和执行节点,任务队列和任务结果队列也可以使用协程来实现。例如,使用asyncio.Queue
rrreee
Dans le nœud d'exécution, nous pouvons utiliser des coroutines pour recevoir des tâches et les exécuter. Voici un exemple de code simple : 🎜rrreee🎜Dans l'exemple de code ci-dessus,asyncio
fournit les mots-clés async
et await
pour la définition des fonctions Coroutine et l'attente. pour les résultats d'exécution des autres coroutines dans la coroutine. En définissant la logique de traitement des tâches dans le planificateur de tâches et les nœuds d'exécution en tant que fonctions de coroutine, nous pouvons tirer parti des caractéristiques des E/S asynchrones et des coroutines pour implémenter un système de planification de tâches distribuées hautement concurrent. 🎜🎜En plus des planificateurs de tâches et des nœuds d'exécution, les files d'attente de tâches et les files d'attente de résultats de tâches peuvent également être implémentées à l'aide de coroutines. Par exemple, l'utilisation de asyncio.Queue
comme file d'attente des tâches et file d'attente des résultats peut facilement implémenter la planification des tâches et le traitement des résultats asynchrones. 🎜🎜Pour résumer, en utilisant des IO asynchrones et des coroutines en Python, nous pouvons facilement implémenter un système de planification de tâches distribuées hautement concurrent. Cette approche améliore non seulement les performances et l'évolutivité du système, mais permet également une meilleure utilisation des ressources du système. Bien entendu, l'exemple de code ci-dessus n'est qu'un exemple simple. Dans un système de planification de tâches distribué réel, d'autres facteurs peuvent devoir être pris en compte, tels que la communication réseau et l'équilibrage de charge. Mais en maîtrisant les principes de base et les applications des E/S asynchrones et des coroutines, nous pouvons mieux comprendre et construire des systèmes distribués plus complexes. 🎜Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Outils d'IA chauds

Undresser.AI Undress
Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover
Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool
Images de déshabillage gratuites

Clothoff.io
Dissolvant de vêtements AI

AI Hentai Generator
Générez AI Hentai gratuitement.

Article chaud

Outils chauds

Bloc-notes++7.3.1
Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise
Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1
Puissant environnement de développement intégré PHP

Dreamweaver CS6
Outils de développement Web visuel

SublimeText3 version Mac
Logiciel d'édition de code au niveau de Dieu (SublimeText3)

PHP et Python ont leurs propres avantages et inconvénients, et le choix dépend des besoins du projet et des préférences personnelles. 1.Php convient au développement rapide et à la maintenance des applications Web à grande échelle. 2. Python domine le domaine de la science des données et de l'apprentissage automatique.

Python et JavaScript ont leurs propres avantages et inconvénients en termes de communauté, de bibliothèques et de ressources. 1) La communauté Python est amicale et adaptée aux débutants, mais les ressources de développement frontal ne sont pas aussi riches que JavaScript. 2) Python est puissant dans les bibliothèques de science des données et d'apprentissage automatique, tandis que JavaScript est meilleur dans les bibliothèques et les cadres de développement frontaux. 3) Les deux ont des ressources d'apprentissage riches, mais Python convient pour commencer par des documents officiels, tandis que JavaScript est meilleur avec MDNWEBDOCS. Le choix doit être basé sur les besoins du projet et les intérêts personnels.

Activer l'accélération du GPU Pytorch sur le système CentOS nécessite l'installation de versions CUDA, CUDNN et GPU de Pytorch. Les étapes suivantes vous guideront tout au long du processus: CUDA et CUDNN Installation détermineront la compatibilité de la version CUDA: utilisez la commande NVIDIA-SMI pour afficher la version CUDA prise en charge par votre carte graphique NVIDIA. Par exemple, votre carte graphique MX450 peut prendre en charge CUDA11.1 ou plus. Téléchargez et installez Cudatoolkit: visitez le site officiel de Nvidiacudatoolkit et téléchargez et installez la version correspondante selon la version CUDA la plus élevée prise en charge par votre carte graphique. Installez la bibliothèque CUDNN:

Docker utilise les fonctionnalités du noyau Linux pour fournir un environnement de fonctionnement d'application efficace et isolé. Son principe de travail est le suivant: 1. Le miroir est utilisé comme modèle en lecture seule, qui contient tout ce dont vous avez besoin pour exécuter l'application; 2. Le Système de fichiers Union (UnionFS) empile plusieurs systèmes de fichiers, ne stockant que les différences, l'économie d'espace et l'accélération; 3. Le démon gère les miroirs et les conteneurs, et le client les utilise pour l'interaction; 4. Les espaces de noms et les CGROUP implémentent l'isolement des conteneurs et les limitations de ressources; 5. Modes de réseau multiples prennent en charge l'interconnexion du conteneur. Ce n'est qu'en comprenant ces concepts principaux que vous pouvez mieux utiliser Docker.

Minio Object Storage: Déploiement haute performance dans le système Centos System Minio est un système de stockage d'objets distribué haute performance développé sur la base du langage Go, compatible avec Amazons3. Il prend en charge une variété de langages clients, notamment Java, Python, JavaScript et GO. Cet article introduira brièvement l'installation et la compatibilité de Minio sur les systèmes CentOS. Compatibilité de la version CentOS Minio a été vérifiée sur plusieurs versions CentOS, y compris, mais sans s'y limiter: CentOS7.9: fournit un guide d'installation complet couvrant la configuration du cluster, la préparation de l'environnement, les paramètres de fichiers de configuration, le partitionnement du disque et la mini

La formation distribuée par Pytorch sur le système CentOS nécessite les étapes suivantes: Installation de Pytorch: La prémisse est que Python et PIP sont installés dans le système CentOS. Selon votre version CUDA, obtenez la commande d'installation appropriée sur le site officiel de Pytorch. Pour la formation du processeur uniquement, vous pouvez utiliser la commande suivante: pipinstalltorchtorchVisionTorChaudio Si vous avez besoin d'une prise en charge du GPU, assurez-vous que la version correspondante de CUDA et CUDNN est installée et utilise la version Pytorch correspondante pour l'installation. Configuration de l'environnement distribué: la formation distribuée nécessite généralement plusieurs machines ou des GPU multiples uniques. Lieu

Lors de l'installation de Pytorch sur le système CentOS, vous devez sélectionner soigneusement la version appropriée et considérer les facteurs clés suivants: 1. Compatibilité de l'environnement du système: Système d'exploitation: Il est recommandé d'utiliser CentOS7 ou plus. CUDA et CUDNN: La version Pytorch et la version CUDA sont étroitement liées. Par exemple, Pytorch1.9.0 nécessite CUDA11.1, tandis que Pytorch2.0.1 nécessite CUDA11.3. La version CUDNN doit également correspondre à la version CUDA. Avant de sélectionner la version Pytorch, assurez-vous de confirmer que des versions compatibles CUDA et CUDNN ont été installées. Version Python: branche officielle de Pytorch

La mise à jour de Pytorch vers la dernière version sur CentOS peut suivre les étapes suivantes: Méthode 1: Mise à jour de PIP avec PIP: Assurez-vous d'abord que votre PIP est la dernière version, car les anciennes versions de PIP peuvent ne pas être en mesure d'installer correctement la dernière version de Pytorch. pipinstall-upradepip désinstalle ancienne version de Pytorch (si installé): PipuninstallTorchtorchVisiontorchaudio installation dernier
