(Oralce)Web翻页优化实例_PHP
Web翻页优化实例
作者:Wanghai
环境:
Linux version 2.4.20-8custom (root@web2) (gcc version 3.2.2 20030222 (Red Hat Linux 3.2.2-5)) #3 SMP Thu Jun 5 22:03:36 CST 2003
Mem: 2113466368
Swap: 4194881536
CPU:两个超线程的Intel(R) Xeon(TM) CPU 2.40GHz
优化前语句在mysql里面查询15秒左右出来,转移到oracle后进行在不调整索引和语句的情况下执行时间大概是4-5秒,调整后执行时间小于0.5秒。
翻页语句:
SELECT * FROM (SELECT T1.*, rownum as linenum FROM (
SELECT /*+ index(a ind_old)*/
a.category FROM auction_auctions a WHERE a.category =' 170101 ' AND a.closed='0' AND ends > sysdate AND (a.approve_status>=0) ORDER BY a.ends) T1 WHERE rownum < 18681) WHERE linenum >= 18641
被查询的表:auction_auctions(产品表)
表结构:
SQL> desc auction_auctions;
Name Null? Type
----------------------------------------- -------- ----------------------------
ID NOT NULL VARCHAR2(32)
USERNAME VARCHAR2(32)
TITLE CLOB
GMT_MODIFIED NOT NULL DATE
STARTS NOT NULL DATE
DESCRIPTION CLOB
PICT_URL CLOB
CATEGORY NOT NULL VARCHAR2(11)
MINIMUM_BID NUMBER
RESERVE_PRICE NUMBER
BUY_NOW NUMBER
AUCTION_TYPE CHAR(1)
DURATION VARCHAR2(7)
INCREMENTNUM NOT NULL NUMBER
CITY VARCHAR2(30)
PROV VARCHAR2(20)
LOCATION VARCHAR2(40)
LOCATION_ZIP VARCHAR2(6)
SHIPPING CHAR(1)
PAYMENT CLOB
INTERNATIONAL CHAR(1)
ENDS NOT NULL DATE
CURRENT_BID NUMBER
CLOSED CHAR(2)
PHOTO_UPLOADED CHAR(1)
QUANTITY NUMBER(11)
STORY CLOB
HAVE_INVOICE NOT NULL NUMBER(1)
HAVE_GUARANTEE NOT NULL NUMBER(1)
STUFF_STATUS NOT NULL NUMBER(1)
APPROVE_STATUS NOT NULL NUMBER(1)
OLD_STARTS NOT NULL DATE
ZOO VARCHAR2(10)
PROMOTED_STATUS NOT NULL NUMBER(1)
REPOST_TYPE CHAR(1)
REPOST_TIMES NOT NULL NUMBER(4)
SECURE_TRADE_AGREE NOT NULL NUMBER(1)
SECURE_TRADE_TRANSACTION_FEE VARCHAR2(16)
SECURE_TRADE_ORDINARY_POST_FEE NUMBER
SECURE_TRADE_FAST_POST_FEE NUMBER
表记录数及大小
SQL> select count(*) from auction_auctions;
COUNT(*)
----------
537351
SQL> select segment_name,bytes,blocks from user_segments where segment_name ='AUCTION_AUCTIONS';
SEGMENT_NAME BYTES BLOCKS
AUCTION_AUCTIONS 1059061760 129280
表上原有的索引
create index ind_old on auction_auctions(closed,approve_status,category,ends) tablespace tbsindex compress 2;
SQL> select segment_name,bytes,blocks from user_segments where segment_name = 'IND_OLD';
SEGMENT_NAME BYTES BLOCKS
IND_OLD 20971520 2560
表和索引都已经分析过,我们来看一下sql执行的费用
SQL> set autotrace trace;
SQL> SELECT * FROM (SELECT T1.*, rownum as linenum FROM (SELECT a.* FROM auction_auctions a WHERE a.category like '18%' AND a.closed='0' AND ends > sysdate AND (a.approve_status>=0) ORDER BY a.ends) T1 WHERE rownum <18681) WHERE linenum >= 18641;
40 rows selected.
Execution Plan
----------------------------------------------------------
0 SELECT STATEMENT Optimizer=CHOOSE (Cost=19152 Card=18347 Byt
es=190698718)
1 0 VIEW (Cost=19152 Card=18347 Bytes=190698718)
2 1 COUNT (STOPKEY)
3 2 VIEW (Cost=19152 Card=18347 Bytes=190460207)
4 3 TABLE ACCESS (BY INDEX ROWID) OF 'AUCTION_AUCTIONS'
(Cost=19152 Card=18347 Bytes=20860539)
5 4 INDEX (RANGE SCAN) OF 'IND_OLD' (NON-UNIQUE) (Cost
=810 Card=186003)
Statistics
----------------------------------------------------------
0 recursive calls
0 db block gets
19437 consistent gets
18262 physical reads
0 redo size
114300 bytes sent via SQL*Net to client
56356 bytes received via SQL*Net from client
435 SQL*Net roundtrips to/from client
0 sorts (memory)
0 sorts (disk)
40 rows processed
我们可以看到这条sql语句通过索引范围扫描找到最里面的结果集,然后通过两个view操作最后得出数据。其中18502 consistent gets,17901 physical reads
我们来看一下这个索引建的到底合不合理,先看下各个查寻列的distinct值
select count(distinct ends) from auction_auctions;
COUNT(DISTINCTENDS)
-------------------
338965
SQL> select count(distinct category) from auction_auctions;
COUNT(DISTINCTCATEGORY)
-----------------------
1148
SQL> select count(distinct closed) from auction_auctions;
COUNT(DISTINCTCLOSED)
---------------------
2
SQL> select count(distinct approve_status) from auction_auctions;
COUNT(DISTINCTAPPROVE_STATUS)
-----------------------------
5
页索引里列平均存储长度
SQL> select avg(vsize(ends)) from auction_auctions;
AVG(VSIZE(ENDS))
----------------
7
SQL> select avg(vsize(closed)) from auction_auctions;
AVG(VSIZE(CLOSED))
------------------
2
SQL> select avg(vsize(category)) from auction_auctions;
AVG(VSIZE(CATEGORY))
--------------------
5.52313106
SQL> select avg(vsize(approve_status)) from auction_auctions;
AVG(VSIZE(APPROVE_STATUS))
--------------------------
1.67639401
我们来估算一下各种组合索引的大小,可以看到closed,approve_status,category都是相对较低集势的列(重复值较多),下面我们来大概计算下各种页索引需要的空间
column distinct num column len
ends 338965 7
category 1148 5.5
closed 2 2
approve_status 5 1.7
index1: (ends,closed,category,approve_status) compress 2
ends:distinct number---338965
closed: distinct number---2
index size=338965*2*(9+2)+ 537351*(1.7+5.5+6)=14603998
index2: (closed,category,ends,approve_status)
closed: distinct number---2
category: distinct number---1148
index size=2*1148*(2+5.5)+537351*(7+1.7+6)=7916279
index3: (closed,approve_status,category,ends)
closed: distinct number---2
approve_status: distinct number―5
index size=2*5*(2+1.7)+537351*(7+5.5+6)=9941030
结果出来了,index2: (closed,category,ends,approve_status)的索引最小
我们再来看一下语句
SELECT * FROM (SELECT T1.*, rownum as linenum FROM (SELECT a.* FROM auction_auctions a WHERE a.category like '18%' AND a.closed='0' AND ends > sysdate AND (a.approve_status>=0) ORDER BY a.ends) T1 WHERE rownum <18681) WHERE linenum >= 18641;
可以看出这个sql语句有很大优化余地,首先最里面的结果集SELECT a.* FROM auction_auctions a WHERE a.category like '18%' AND a.closed='0' AND ends > sysdate AND (a.approve_status>=0) ORDER BY a.ends,这里的话会走index range scan,然后table scan by rowid,这样的话如果符合条件的数据多的话相当耗资源,我们可以改写成
SELECT a.rowid FROM auction_auctions a WHERE a.category like '18%' AND a.closed='0' AND ends > sysdate AND (a.approve_status>=0) ORDER BY a.ends
这样的话最里面的结果集只需要index fast full scan就可以完成了,再改写一下得出以下语句
select * from auction_auctions where rowid in (SELECT rid FROM (
SELECT T1.rowid rid, rownum as linenum FROM
(SELECT a.rowid FROM auction_auctions a WHERE a.category like '18%' AND a.closed='0' AND ends > sysdate AND
(a.approve_status>=0) ORDER BY a.ends) T1 WHERE rownum < 18681) WHERE linenum >= 18641)
下面我们来测试一下这个索引的查询开销
select * from auction_auctions where rowid in (SELECT rid FROM (
SELECT T1.rowid rid, rownum as linenum FROM
(SELECT a.rowid FROM auction_auctions a WHERE a.category like '18%' AND a.closed='0' AND ends > sysdate AND
(a.approve_status>=0) ORDER BY a.closed,a.ends) T1 WHERE rownum < 18681) WHERE linenum >= 18641)
Execution Plan
----------------------------------------------------------
0 SELECT STATEMENT Optimizer=CHOOSE (Cost=18698 Card=18344 Byt
es=21224008)
1 0 NESTED LOOPS (Cost=18698 Card=18344 Bytes=21224008)
2 1 VIEW (Cost=264 Card=18344 Bytes=366880)
3 2 SORT (UNIQUE)
4 3 COUNT (STOPKEY)
5 4 VIEW (Cost=264 Card=18344 Bytes=128408)
6 5 SORT (ORDER BY STOPKEY) (Cost=264 Card=18344 Byt
es=440256)
7 6 INDEX (FAST FULL SCAN) OF 'IDX_AUCTION_BROWSE'
(NON-UNIQUE) (Cost=159 Card=18344 Bytes=440256)
8 1 TABLE ACCESS (BY USER ROWID) OF 'AUCTION_AUCTIONS' (Cost
=1 Card=1 Bytes=1137)
Statistics
----------------------------------------------------------
0 recursive calls
0 db block gets
2080 consistent gets
1516 physical reads
0 redo size
114840 bytes sent via SQL*Net to client
56779 bytes received via SQL*Net from client
438 SQL*Net roundtrips to/from client
2 sorts (memory)
0 sorts (disk)
40 rows processed
可以看到consistent gets从19437降到2080,physical reads从18262降到1516,查询时间也丛4秒左右下降到0。5秒,可以来说这次sql调整取得了预期的效果。
又修改了一下语句,
SQL> select * from auction_auctions where rowid in
2 (SELECT rid FROM (
3 SELECT T1.rowid rid, rownum as linenum FROM
4 (SELECT a.rowid FROM auction_auctions a
5 WHERE a.category like '18%' AND a.closed='0' AND ends > sysdate AND
a.approve_status>=0
6 7 ORDER BY a.closed,a.category,a.ends) T1
8 WHERE rownum < 18600) WHERE linenum >= 18560) ;
40 rows selected.
Execution Plan
----------------------------------------------------------
0 SELECT STATEMENT Optimizer=CHOOSE (Cost=17912 Card=17604 Byt
es=20367828)
1 0 NESTED LOOPS (Cost=17912 Card=17604 Bytes=20367828)
2 1 VIEW (Cost=221 Card=17604 Bytes=352080)
3 2 SORT (UNIQUE)
4 3 COUNT (STOPKEY)
5 4 VIEW (Cost=221 Card=17604 Bytes=123228)
6 5 INDEX (RANGE SCAN) OF 'IDX_AUCTION_BROWSE' (NON-
UNIQUE) (Cost=221 Card=17604 Bytes=422496)
7 1 TABLE ACCESS (BY USER ROWID) OF 'AUCTION_AUCTIONS' (Cost
=1 Card=1 Bytes=1137)
Statistics
----------------------------------------------------------
0 recursive calls
0 db block gets
550 consistent gets
14 physical reads
0 redo size
117106 bytes sent via SQL*Net to client
56497 bytes received via SQL*Net from client
436 SQL*Net roundtrips to/from client
1 sorts (memory)
0 sorts (disk)
40 rows processed
在order by里加上索引前导列,消除了
6 5 SORT (ORDER BY STOPKEY) (Cost=264 Card=18344 Byt
es=440256)
,把consistent gets从2080降到550

Outils d'IA chauds

Undresser.AI Undress
Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover
Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool
Images de déshabillage gratuites

Clothoff.io
Dissolvant de vêtements AI

Video Face Swap
Échangez les visages dans n'importe quelle vidéo sans effort grâce à notre outil d'échange de visage AI entièrement gratuit !

Article chaud

Outils chauds

Bloc-notes++7.3.1
Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise
Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1
Puissant environnement de développement intégré PHP

Dreamweaver CS6
Outils de développement Web visuel

SublimeText3 version Mac
Logiciel d'édition de code au niveau de Dieu (SublimeText3)

Laravel est un framework de développement PHP populaire, mais il est parfois critiqué pour sa lenteur comme un escargot. Qu'est-ce qui cause exactement la vitesse insatisfaisante de Laravel ? Cet article fournira une explication détaillée des raisons pour lesquelles Laravel est aussi lent qu'un escargot sous plusieurs aspects, et la combinera avec des exemples de code spécifiques pour aider les lecteurs à mieux comprendre ce problème. 1. Problèmes de performances des requêtes ORM Dans Laravel, ORM (Object Relational Mapping) est une fonctionnalité très puissante qui permet

Décoder les goulots d'étranglement des performances de Laravel : les techniques d'optimisation entièrement révélées ! Laravel, en tant que framework PHP populaire, offre aux développeurs des fonctions riches et une expérience de développement pratique. Cependant, à mesure que la taille du projet augmente et que le nombre de visites augmente, nous pouvons être confrontés au défi des goulots d'étranglement en matière de performances. Cet article approfondira les techniques d'optimisation des performances de Laravel pour aider les développeurs à découvrir et à résoudre les problèmes de performances potentiels. 1. Optimisation des requêtes de base de données à l'aide du chargement différé d'Eloquent Lorsque vous utilisez Eloquent pour interroger la base de données, évitez

La complexité temporelle mesure le temps d'exécution d'un algorithme par rapport à la taille de l'entrée. Les conseils pour réduire la complexité temporelle des programmes C++ incluent : le choix des conteneurs appropriés (tels que vecteur, liste) pour optimiser le stockage et la gestion des données. Utilisez des algorithmes efficaces tels que le tri rapide pour réduire le temps de calcul. Éliminez les opérations multiples pour réduire le double comptage. Utilisez des branches conditionnelles pour éviter les calculs inutiles. Optimisez la recherche linéaire en utilisant des algorithmes plus rapides tels que la recherche binaire.

Le garbage collection (GC) de Golang a toujours été un sujet brûlant parmi les développeurs. En tant que langage de programmation rapide, le garbage collector intégré de Golang peut très bien gérer la mémoire, mais à mesure que la taille du programme augmente, certains problèmes de performances surviennent parfois. Cet article explorera les stratégies d'optimisation GC de Golang et fournira quelques exemples de code spécifiques. La collecte des déchets dans le garbage collector de Golang Golang est basée sur un balayage de marque simultané (concurrentmark-s

Le goulot d'étranglement des performances de Laravel révélé : la solution d'optimisation révélée ! Avec le développement de la technologie Internet, l’optimisation des performances des sites Web et des applications est devenue de plus en plus importante. En tant que framework PHP populaire, Laravel peut être confronté à des goulots d'étranglement en termes de performances pendant le processus de développement. Cet article explorera les problèmes de performances que les applications Laravel peuvent rencontrer et fournira des solutions d'optimisation et des exemples de code spécifiques afin que les développeurs puissent mieux résoudre ces problèmes. 1. Optimisation des requêtes de base de données Les requêtes de base de données sont l'un des goulots d'étranglement de performances courants dans les applications Web. exister

1. Appuyez sur la combinaison de touches (touche Win + R) sur le bureau pour ouvrir la fenêtre d'exécution, puis entrez [regedit] et appuyez sur Entrée pour confirmer. 2. Après avoir ouvert l'éditeur de registre, nous cliquons pour développer [HKEY_CURRENT_USERSoftwareMicrosoftWindowsCurrentVersionExplorer], puis voyons s'il y a un élément Sérialiser dans le répertoire. Sinon, nous pouvons cliquer avec le bouton droit sur Explorateur, créer un nouvel élément et le nommer Sérialiser. 3. Cliquez ensuite sur Sérialiser, puis cliquez avec le bouton droit sur l'espace vide dans le volet de droite, créez une nouvelle valeur de bit DWORD (32) et nommez-la Étoile.

La configuration des paramètres du Vivox100 révélée : Comment optimiser les performances du processeur ? À l’ère actuelle de développement technologique rapide, les smartphones sont devenus un élément indispensable de notre vie quotidienne. En tant qu'élément important d'un smartphone, l'optimisation des performances du processeur est directement liée à l'expérience utilisateur du téléphone mobile. En tant que smartphone haut de gamme, la configuration des paramètres du Vivox100 a attiré beaucoup d'attention, en particulier l'optimisation des performances du processeur a attiré beaucoup d'attention de la part des utilisateurs. En tant que « cerveau » du téléphone mobile, le processeur affecte directement la vitesse de fonctionnement du téléphone mobile.

La relation entre le nombre d'instances Oracle et les performances de la base de données La base de données Oracle est l'un des systèmes de gestion de bases de données relationnelles les plus connus du secteur et est largement utilisée dans le stockage et la gestion de données au niveau de l'entreprise. Dans la base de données Oracle, l'instance est un concept très important. L'instance fait référence à l'environnement d'exécution de la base de données Oracle en mémoire. Chaque instance possède une structure de mémoire et un processus d'arrière-plan indépendants, qui sont utilisés pour traiter les demandes des utilisateurs et gérer les opérations de la base de données. Le nombre d'instances a un impact important sur les performances et la stabilité de la base de données Oracle.
