


Transformer le paysage urbain : l'impact de l'intelligence artificielle
L'IA et l'apprentissage profond sont déjà partout, et ils ont désormais le potentiel de remodeler le paysage urbain. Les modèles d'apprentissage profond qui analysent les images de paysages peuvent aider les urbanistes à visualiser les plans de réaménagement, à améliorer l'esthétique et à éviter des erreurs coûteuses. Cependant, pour que ces modèles soient efficaces, ils doivent identifier et classer avec précision les éléments des images, un défi connu sous le nom de segmentation des instances. Ce défi survient en raison du manque de données de formation appropriées, car la génération d'étiquettes d'images précises de « vérité terrain » implique une segmentation manuelle à forte intensité de main-d'œuvre. Cependant, un article récent suggère qu'une équipe a peut-être trouvé la réponse
Générer des données synthétiques innovantes grâce à l'intelligence artificielle
Des chercheurs de l'Université d'Osaka ont formé des modèles gourmands en données en tirant parti de simulations informatiques basées sur l'intelligence artificielle pour concevoir une méthode permettant de résoudre ce problème. Leur approche consiste à créer un modèle 3D réaliste de la ville pour générer des segmentations de vérité terrain. Le modèle image à image génère ensuite des images réalistes basées sur des données de vérité terrain. Ce processus aboutit à un ensemble de données d'image réaliste qui ressemble à une ville réelle, complété par des étiquettes de vérité terrain générées avec précision, éliminant ainsi le besoin de segmentation manuelle.
Bien que les données synthétiques aient déjà été utilisées pour l'apprentissage profond, leur approche est différente, créant suffisamment de données de formation pour des modèles du monde réel grâce à des simulations de structures urbaines. En générant de manière procédurale des modèles 3D de villes réalistes et en utilisant un moteur de jeu pour créer des images segmentées, ils peuvent former un réseau antagoniste génératif pour convertir des formes en images avec des textures urbaines réalistes, générant ainsi des images de vue de rue.
Avantages et perspectives d'avenir
Avec cette approche, il n'est plus nécessaire d'utiliser des ensembles de données accessibles au public sur les bâtiments réels, tout en étant capable d'isoler des objets individuels même s'ils se chevauchent dans l'image. Cette approche réduit considérablement les coûts de main-d'œuvre tout en générant des données de formation de haute qualité. Pour vérifier son efficacité, les chercheurs ont formé le modèle de segmentation sur des données simulées et l'ont comparé à un modèle formé sur des données réelles. Les résultats ont montré que le modèle d'IA fonctionnait de manière similaire sur des instances impliquant de grands bâtiments uniques, mais avec des temps de préparation des ensembles de données considérablement réduits. Les chercheurs visaient à améliorer les performances du modèle image à image dans différentes conditions. Leur réalisation résout non seulement le manque de données de formation, mais réduit également les coûts associés à la préparation des ensembles de données, ouvrant ainsi la voie à une nouvelle ère d’aménagement paysager urbain assisté par l’apprentissage profond.
Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Outils d'IA chauds

Undresser.AI Undress
Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover
Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool
Images de déshabillage gratuites

Clothoff.io
Dissolvant de vêtements AI

AI Hentai Generator
Générez AI Hentai gratuitement.

Article chaud

Outils chauds

Bloc-notes++7.3.1
Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise
Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1
Puissant environnement de développement intégré PHP

Dreamweaver CS6
Outils de développement Web visuel

SublimeText3 version Mac
Logiciel d'édition de code au niveau de Dieu (SublimeText3)

Sujets chauds

GO POINTER SYNTAXE ET ATTENDRE DES PROBLÈMES DANS LA BIBLIOTHÈQUE VIPER Lors de la programmation en langage Go, il est crucial de comprendre la syntaxe et l'utilisation des pointeurs, en particulier dans ...

Pourquoi l'itération de la carte dans GO fait-elle que toutes les valeurs deviennent le dernier élément? En langue go, face à des questions d'entrevue, vous rencontrez souvent des cartes ...

Il n'y a pas d'outil XML à PDF simple et direct sur mobile. Le processus de visualisation des données requis implique une compréhension et un rendu complexes des données, et la plupart des outils dits "gratuits" sur le marché ont une mauvaise expérience. Il est recommandé d'utiliser des outils côté informatique ou d'utiliser des services cloud, ou de développer vous-même des applications pour obtenir des effets de conversion plus fiables.

Dans le développement du langage GO, l'introduction correctement des packages personnalisés est une étape cruciale. Cet article ciblera "Golang ...

L'embellissement XML améliore essentiellement sa lisibilité, y compris l'indentation raisonnable, les pauses-lignes et l'organisation des étiquettes. Le principe est de traverser l'arbre XML, d'ajouter l'indentation en fonction du niveau et de gérer les balises et les balises vides contenant du texte. La bibliothèque XML.ETREE.ElementTree de Python fournit une fonction Pretty_xml () pratique qui peut implémenter le processus d'embellissement ci-dessus.

La validation du format XML consiste à vérifier sa structure et sa conformité avec DTD ou schéma. Un analyseur XML est requis, tel que ElementTree (Basic Syntax Heatking) ou LXML (vérification plus puissante, prise en charge XSD). Le processus de vérification implique l'analyse du fichier XML, le chargement du schéma XSD et l'exécution de la méthode AssertValid pour lancer une exception lorsqu'une erreur est détectée. La vérification du format XML nécessite également de gérer diverses exceptions et de mieux comprendre le langage du schéma XSD.

Le Array Char stocke des séquences de caractères en C et est déclaré Char Array_name [Taille]. L'élément d'accès est passé par l'opérateur d'indice, et l'élément se termine par le terminateur nul «\ 0», qui représente le point final de la chaîne. Le langage C fournit une variété de fonctions de manipulation de cordes, telles que strlen (), strcpy (), strcat () et strcmp ().

Pourquoi l'utilisation des serrures provoque-t-elle une panique de temps en temps? Jetons un coup d'œil à une question intéressante: pourquoi en Go, même si des verrous sont ajoutés dans le code, parfois ...
