


Comment l'intelligence artificielle façonne le secteur de la construction
La mise en œuvre de solutions d’intelligence artificielle ne consiste pas seulement à obtenir un avantage concurrentiel, mais joue un rôle important dans les efforts du secteur de la construction pour résoudre d’autres défis majeurs qui changent la façon dont les projets sont planifiés, construits et gérés. Ces défis incluent la décarbonisation et la satisfaction du besoin de zéro émission nette.
L'intelligence artificielle doit être appliquée de différentes manières pendant les phases de conception et de construction des actifs du projet. L'industrie de la construction devrait clairement saisir ces opportunités
Conception générative
La conception générative est une approche pilotée par l'intelligence artificielle qui fournit une variété de solutions appropriées à des défis d'ingénierie spécifiques. Les utilisateurs peuvent personnaliser ces solutions selon leurs besoins
Au lieu d'avoir à se soucier des contraintes et des paramètres lors de la conception, les concepteurs peuvent choisir d'informer le logiciel des spécifications et des limitations. Cela peut inclure tout, de la solidité et de l'agilité au coût et aux performances. Le processus de conception générative analyse ensuite ces entrées pour générer des combinaisons potentielles qui répondent aux besoins spécifiés.
Grâce à des algorithmes avancés d'intelligence artificielle et à des capacités d'apprentissage automatique, les concepteurs et les architectes sont en mesure de proposer des solutions innovantes qui améliorent l'efficacité énergétique, renforcent l'intégrité structurelle et rendent le processus de conception plus fluide.
Il est prouvé que la conception générative peut offrir de nombreux avantages. L'utilisation de la conception générative peut réduire considérablement les coûts des matériaux de 30 % et le temps de construction de 40 %. La réalisation d’une analyse structurelle assistée par l’IA a le potentiel de réduire le temps de conception de 50 % tout en maintenant les performances structurelles. De plus, le Green Building Council des États-Unis suggère que l’adoption de pratiques de conception durable basées sur l’IA peut réduire la consommation d’énergie d’un bâtiment jusqu’à 30 % et réduire les émissions de carbone.
Estimation de projet basée sur le BIM
La modélisation des informations du bâtiment fait référence à un ensemble d'outils logiciels de conception et de modélisation 3D largement utilisés dans l'industrie de la construction. Ces outils sont spécialement conçus pour aider à visualiser les conceptions de construction sous plusieurs perspectives. L'intégration de capacités d'intelligence artificielle dans le BIM peut apporter divers avantages, tels que la possibilité d'effectuer des calculs de quantités, ce qui implique d'extraire des informations essentielles sur les matériaux nécessaires.
En utilisant la technologie BIM pour les statistiques de quantité de projets, des résultats plus précis et plus fiables peuvent être obtenus, et cela peut également aider les entrepreneurs à améliorer leur efficacité, à réduire les coûts et à améliorer la qualité globale de la conception, de la construction et de l'exploitation
Application de l'ingénierie numérique dans l'industrie de l'ingénierie Il existe de nombreux avantages évidents, tels qu'une précision améliorée des mesures techniques et un gain de temps. Cependant, la transformation numérique comporte également certains défis. L’une des questions importantes est le facteur humain. La manière d’attirer et de retenir les talents nécessaires et de leur fournir des incitations et des récompenses appropriées est une question à considérer. De plus, les compétences requises vont au-delà de l’expertise numérique. Lorsqu'un modèle BIM est incorrect, la question de l'exactitude du modèle BIM finira par devenir un problème important si le personnel impliqué ne dispose pas des capacités de base en matière de métré pour identifier les erreurs.
Le secteur de la construction verticale est l'un des secteurs les moins numérisés, malgré le potentiel est énorme, mais aussi lent à accepter les nouvelles technologies. De nombreux systèmes d'apprentissage automatique dans le domaine de la construction jouent le rôle de « boîtes noires », ce qui signifie qu'ils n'expliquent pas leurs conclusions. De plus, les algorithmes utilisés pour prendre des décisions sont souvent propriétaires et difficiles à comprendre, ce qui rend difficile pour les professionnels de la construction de comprendre les raisons et les méthodes utilisées, ce qui crée des difficultés lors de la formulation de recommandations. Certains critiques universitaires estiment que sans recherche sur les méthodes d'IA explicables, le potentiel de l'IA dans la construction pourrait être limité.
Les entreprises de construction trouvent souvent très difficile de comprendre les avantages et la mise en œuvre des systèmes d'IA en raison de l'investissement impliqué et du coût élevé. Prendre des décisions d’investissement peut être difficile, en particulier lorsque de nombreux entrepreneurs sont impliqués et que les travaux sont exécutés par plusieurs sous-traitants. Cette complexité fait qu’il est difficile pour l’industrie de s’entendre sur une solution d’IA unique et acceptée. Cela augmente également la possibilité qu’un investissement devienne obsolète ou inutile à court terme. Compte tenu des défis monétaires auxquels est confronté le secteur dans son ensemble, il est compréhensible que les organisations hésitent à investir dans l'avenir.
D'un point de vue juridique, l'exploitation des programmes de chemin critique d'IA disponibles dans le commerce peut réduire les litiges, éliminant ainsi le besoin de témoins experts en programmation. Cependant, si la conclusion ne peut pas être entièrement expliquée et si le raisonnement qui la sous-tend ne peut pas être testé et remis en question, pourquoi les individus dont les intérêts commerciaux dépendent du résultat voudraient-ils l’accepter si chaque membre de la chaîne d’approvisionnement utilise un algorithme de programmation différent ? Cela peut conduire à des résultats différents, en quoi cela aidera-t-il ? Les gouvernements et les décideurs politiques ont un rôle clair à jouer sur cette question
À ce stade, on peut voir l'émergence d'une industrie à deux vitesses. Dans ce scénario, certaines entreprises deviennent gagnantes, tandis que les obstacles qui empêchent d’autres de s’engager sur la voie rapide deviennent de plus en plus insurmontables. Des asymétries d’information peuvent survenir lorsqu’une partie dispose d’une solution d’IA et l’autre non. L'intégration de l'ensemble de la chaîne d'approvisionnement et la synchronisation de la chaîne d'approvisionnement autour de segments spécifiques peuvent également se produire
en utilisant des solutions d'IA pour chaque segmentCe qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Outils d'IA chauds

Undresser.AI Undress
Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover
Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool
Images de déshabillage gratuites

Clothoff.io
Dissolvant de vêtements AI

AI Hentai Generator
Générez AI Hentai gratuitement.

Article chaud

Outils chauds

Bloc-notes++7.3.1
Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise
Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1
Puissant environnement de développement intégré PHP

Dreamweaver CS6
Outils de développement Web visuel

SublimeText3 version Mac
Logiciel d'édition de code au niveau de Dieu (SublimeText3)

Sujets chauds

GO POINTER SYNTAXE ET ATTENDRE DES PROBLÈMES DANS LA BIBLIOTHÈQUE VIPER Lors de la programmation en langage Go, il est crucial de comprendre la syntaxe et l'utilisation des pointeurs, en particulier dans ...

Il n'y a pas d'outil XML à PDF simple et direct sur mobile. Le processus de visualisation des données requis implique une compréhension et un rendu complexes des données, et la plupart des outils dits "gratuits" sur le marché ont une mauvaise expérience. Il est recommandé d'utiliser des outils côté informatique ou d'utiliser des services cloud, ou de développer vous-même des applications pour obtenir des effets de conversion plus fiables.

Pourquoi l'itération de la carte dans GO fait-elle que toutes les valeurs deviennent le dernier élément? En langue go, face à des questions d'entrevue, vous rencontrez souvent des cartes ...

Dans le développement du langage GO, l'introduction correctement des packages personnalisés est une étape cruciale. Cet article ciblera "Golang ...

L'embellissement XML améliore essentiellement sa lisibilité, y compris l'indentation raisonnable, les pauses-lignes et l'organisation des étiquettes. Le principe est de traverser l'arbre XML, d'ajouter l'indentation en fonction du niveau et de gérer les balises et les balises vides contenant du texte. La bibliothèque XML.ETREE.ElementTree de Python fournit une fonction Pretty_xml () pratique qui peut implémenter le processus d'embellissement ci-dessus.

La validation du format XML consiste à vérifier sa structure et sa conformité avec DTD ou schéma. Un analyseur XML est requis, tel que ElementTree (Basic Syntax Heatking) ou LXML (vérification plus puissante, prise en charge XSD). Le processus de vérification implique l'analyse du fichier XML, le chargement du schéma XSD et l'exécution de la méthode AssertValid pour lancer une exception lorsqu'une erreur est détectée. La vérification du format XML nécessite également de gérer diverses exceptions et de mieux comprendre le langage du schéma XSD.

Pourquoi l'utilisation des serrures provoque-t-elle une panique de temps en temps? Jetons un coup d'œil à une question intéressante: pourquoi en Go, même si des verrous sont ajoutés dans le code, parfois ...

Dans le langage GO, comment définir une interface commune et contraindre les méthodes implémentées par l'interface, et gérer simultanément les mêmes méthodes d'interfaces différentes mais différents types de paramètres ...
