


La dernière recherche de Microsoft explore la technologie LoRAShear pour l'élagage LLM et la récupération des connaissances
LoRAShear est une nouvelle méthode développée par Microsoft pour optimiser les modèles de langage (llm) et préserver les connaissances. Il permet un élagage structurel, réduisant les besoins de calcul et améliorant l’efficacité.
La technologie LHSPG (Lora Half-Space Projected Gradient) prend en charge l'élagage structuré progressif et la récupération dynamique des connaissances. Peut être appliqué à divers LLM via l'analyse des graphes de dépendances et l'optimisation de la parcimonie
LoRAPrune combine LoRA avec un élagage structuré itératif pour obtenir un réglage fin efficace des paramètres. Même avec un élagage important sur LLAMA v1, ses performances restent assez élevées
Dans le domaine en évolution de l'intelligence artificielle, les modèles de modèles de langage (llm) sont devenus un outil important pour traiter de grandes quantités de données textuelles, en récupérant rapidement les données pertinentes. l’information et les outils clés pour améliorer l’accessibilité des connaissances. Leur impact considérable couvre des domaines allant de l’amélioration des moteurs de recherche et des systèmes de questions-réponses à l’analyse de données, bénéficiant ainsi aux chercheurs, aux professionnels et aux chercheurs de connaissances.
Le plus gros problème à l'heure actuelle est que LLM doit continuellement mettre à jour ses connaissances pour répondre aux exigences dynamiques de l'information. En règle générale, les développeurs affinent les modèles pré-entraînés à l'aide de données spécifiques au domaine pour les maintenir à jour et intégrer les dernières informations au modèle. Des mises à jour régulières sont essentielles pour les organisations et les chercheurs afin de garantir que LLM suit le rythme du paysage de l'information en constante évolution. Cependant, le coût du réglage fin est élevé et le cycle est long
En réponse à ce besoin urgent, les chercheurs de Microsoft ont lancé une méthode révolutionnaire : LoRAShear. Cette approche innovante simplifie non seulement le LLM mais facilite également la récupération des connaissances structurelles. Le cœur de l’élagage structurel consiste à supprimer ou à réduire des composants spécifiques de l’architecture du réseau neuronal afin d’optimiser l’efficacité, la compacité et les exigences de calcul.
LoRAShear de Microsoft utilise la technologie LHSPG pour prendre en charge l'élagage structuré progressif. Cette approche permet de transférer de manière transparente les connaissances entre les modules LoRA et intègre également une étape dynamique de récupération des connaissances. Le processus de réglage fin est similaire à la pré-formation et au réglage fin guidé pour garantir que le LLM reste à jour et pertinent
Réécrit comme suit : Tirant parti de l'analyse des graphes de dépendances, LoRAShear peut être étendu au LLM général, en particulier avec le support de le module LoRA. Cette méthode utilise les modules LLM et LoRA originaux pour créer un graphe de dépendance et introduit un algorithme d'optimisation de parcimonie structuré qui utilise les informations des modules LoRA pour améliorer la préservation des connaissances pendant le processus de mise à jour du poids
Dans l'article, il s'agit également d'une technique intégrée appelé LoRAPrune est mentionné, qui combine LoRA avec un élagage structuré itératif pour obtenir un réglage fin efficace des paramètres et une accélération matérielle directe. Cette méthode d'économie de mémoire repose entièrement sur les poids et les gradients de LoRA pour les critères d'élagage. Le processus spécifique comprend la construction d'un graphique de suivi, la détermination des groupes de nœuds qui doivent être compressés, la division des variables pouvant être entraînées et enfin leur renvoi à LLM
L'article prouve l'efficacité de LoRAShear grâce à la mise en œuvre sur l'open source LLAMAv1. Notamment, LLAMAv1 avec un élagage de 20 % ne subit qu'une perte de performances de 1 %, tandis que le modèle avec un élagage de 50 % conserve 82 % des performances sur le benchmark d'évaluation.
LoRAShear représente une avancée majeure dans le domaine de l'intelligence artificielle. Cela simplifie non seulement la façon dont le LLM est utilisé, le rendant plus efficace, mais garantit également la préservation des connaissances critiques. Il permet aux applications basées sur l'IA de suivre le rythme de l'évolution de l'environnement informationnel tout en optimisant les ressources informatiques. Alors que les organisations s'appuient de plus en plus sur l'intelligence artificielle pour le traitement des données et la récupération des connaissances, des solutions telles que LoRAShear joueront un rôle clé sur le marché, en assurant efficacité et résilience des connaissances.
Adresse papier : https://arxiv.org/abs/2310.18356
Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Outils d'IA chauds

Undresser.AI Undress
Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover
Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool
Images de déshabillage gratuites

Clothoff.io
Dissolvant de vêtements AI

AI Hentai Generator
Générez AI Hentai gratuitement.

Article chaud

Outils chauds

Bloc-notes++7.3.1
Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise
Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1
Puissant environnement de développement intégré PHP

Dreamweaver CS6
Outils de développement Web visuel

SublimeText3 version Mac
Logiciel d'édition de code au niveau de Dieu (SublimeText3)

Ce site a rapporté le 27 juin que Jianying est un logiciel de montage vidéo développé par FaceMeng Technology, une filiale de ByteDance. Il s'appuie sur la plateforme Douyin et produit essentiellement du contenu vidéo court pour les utilisateurs de la plateforme. Il est compatible avec iOS, Android et. Windows, MacOS et autres systèmes d'exploitation. Jianying a officiellement annoncé la mise à niveau de son système d'adhésion et a lancé un nouveau SVIP, qui comprend une variété de technologies noires d'IA, telles que la traduction intelligente, la mise en évidence intelligente, l'emballage intelligent, la synthèse humaine numérique, etc. En termes de prix, les frais mensuels pour le clipping SVIP sont de 79 yuans, les frais annuels sont de 599 yuans (attention sur ce site : équivalent à 49,9 yuans par mois), l'abonnement mensuel continu est de 59 yuans par mois et l'abonnement annuel continu est de 59 yuans par mois. est de 499 yuans par an (équivalent à 41,6 yuans par mois) . En outre, le responsable de Cut a également déclaré que afin d'améliorer l'expérience utilisateur, ceux qui se sont abonnés au VIP d'origine

Améliorez la productivité, l’efficacité et la précision des développeurs en intégrant une génération et une mémoire sémantique améliorées par la récupération dans les assistants de codage IA. Traduit de EnhancingAICodingAssistantswithContextUsingRAGandSEM-RAG, auteur JanakiramMSV. Bien que les assistants de programmation d'IA de base soient naturellement utiles, ils ne parviennent souvent pas à fournir les suggestions de code les plus pertinentes et les plus correctes, car ils s'appuient sur une compréhension générale du langage logiciel et des modèles d'écriture de logiciels les plus courants. Le code généré par ces assistants de codage est adapté à la résolution des problèmes qu’ils sont chargés de résoudre, mais n’est souvent pas conforme aux normes, conventions et styles de codage des équipes individuelles. Cela aboutit souvent à des suggestions qui doivent être modifiées ou affinées pour que le code soit accepté dans l'application.

Les grands modèles linguistiques (LLM) sont formés sur d'énormes bases de données textuelles, où ils acquièrent de grandes quantités de connaissances du monde réel. Ces connaissances sont intégrées à leurs paramètres et peuvent ensuite être utilisées en cas de besoin. La connaissance de ces modèles est « réifiée » en fin de formation. À la fin de la pré-formation, le modèle arrête effectivement d’apprendre. Alignez ou affinez le modèle pour apprendre à exploiter ces connaissances et répondre plus naturellement aux questions des utilisateurs. Mais parfois, la connaissance du modèle ne suffit pas, et bien que le modèle puisse accéder à du contenu externe via RAG, il est considéré comme bénéfique de l'adapter à de nouveaux domaines grâce à un réglage fin. Ce réglage fin est effectué à l'aide de la contribution d'annotateurs humains ou d'autres créations LLM, où le modèle rencontre des connaissances supplémentaires du monde réel et les intègre.

Pour en savoir plus sur l'AIGC, veuillez visiter : 51CTOAI.x Community https://www.51cto.com/aigc/Translator|Jingyan Reviewer|Chonglou est différent de la banque de questions traditionnelle que l'on peut voir partout sur Internet. nécessite de sortir des sentiers battus. Les grands modèles linguistiques (LLM) sont de plus en plus importants dans les domaines de la science des données, de l'intelligence artificielle générative (GenAI) et de l'intelligence artificielle. Ces algorithmes complexes améliorent les compétences humaines et stimulent l’efficacité et l’innovation dans de nombreux secteurs, devenant ainsi la clé permettant aux entreprises de rester compétitives. LLM a un large éventail d'applications. Il peut être utilisé dans des domaines tels que le traitement du langage naturel, la génération de texte, la reconnaissance vocale et les systèmes de recommandation. En apprenant de grandes quantités de données, LLM est capable de générer du texte

L'ensemble de données ScienceAI Question Answering (QA) joue un rôle essentiel dans la promotion de la recherche sur le traitement du langage naturel (NLP). Des ensembles de données d'assurance qualité de haute qualité peuvent non seulement être utilisés pour affiner les modèles, mais également évaluer efficacement les capacités des grands modèles linguistiques (LLM), en particulier la capacité à comprendre et à raisonner sur les connaissances scientifiques. Bien qu’il existe actuellement de nombreux ensembles de données scientifiques d’assurance qualité couvrant la médecine, la chimie, la biologie et d’autres domaines, ces ensembles de données présentent encore certaines lacunes. Premièrement, le formulaire de données est relativement simple, et la plupart sont des questions à choix multiples. Elles sont faciles à évaluer, mais limitent la plage de sélection des réponses du modèle et ne peuvent pas tester pleinement la capacité du modèle à répondre aux questions scientifiques. En revanche, les questions et réponses ouvertes

L'apprentissage automatique est une branche importante de l'intelligence artificielle qui donne aux ordinateurs la possibilité d'apprendre à partir de données et d'améliorer leurs capacités sans être explicitement programmés. L'apprentissage automatique a un large éventail d'applications dans divers domaines, de la reconnaissance d'images et du traitement du langage naturel aux systèmes de recommandation et à la détection des fraudes, et il change notre façon de vivre. Il existe de nombreuses méthodes et théories différentes dans le domaine de l'apprentissage automatique, parmi lesquelles les cinq méthodes les plus influentes sont appelées les « Cinq écoles d'apprentissage automatique ». Les cinq grandes écoles sont l’école symbolique, l’école connexionniste, l’école évolutionniste, l’école bayésienne et l’école analogique. 1. Le symbolisme, également connu sous le nom de symbolisme, met l'accent sur l'utilisation de symboles pour le raisonnement logique et l'expression des connaissances. Cette école de pensée estime que l'apprentissage est un processus de déduction inversée, à travers les connaissances existantes.

Editeur | KX Dans le domaine de la recherche et du développement de médicaments, il est crucial de prédire avec précision et efficacité l'affinité de liaison des protéines et des ligands pour le criblage et l'optimisation des médicaments. Cependant, les études actuelles ne prennent pas en compte le rôle important des informations sur la surface moléculaire dans les interactions protéine-ligand. Sur cette base, des chercheurs de l'Université de Xiamen ont proposé un nouveau cadre d'extraction de caractéristiques multimodales (MFE), qui combine pour la première fois des informations sur la surface des protéines, la structure et la séquence 3D, et utilise un mécanisme d'attention croisée pour comparer différentes modalités. alignement. Les résultats expérimentaux démontrent que cette méthode atteint des performances de pointe dans la prédiction des affinités de liaison protéine-ligand. De plus, les études d’ablation démontrent l’efficacité et la nécessité des informations sur la surface des protéines et de l’alignement des caractéristiques multimodales dans ce cadre. Les recherches connexes commencent par "S

Selon les informations de ce site Web du 5 juillet, GlobalFoundries a publié un communiqué de presse le 1er juillet de cette année, annonçant l'acquisition de la technologie de nitrure de gallium (GaN) et du portefeuille de propriété intellectuelle de Tagore Technology, dans l'espoir d'élargir sa part de marché dans l'automobile et Internet. des objets et des domaines d'application des centres de données d'intelligence artificielle pour explorer une efficacité plus élevée et de meilleures performances. Alors que des technologies telles que l’intelligence artificielle générative (GenerativeAI) continuent de se développer dans le monde numérique, le nitrure de gallium (GaN) est devenu une solution clé pour une gestion durable et efficace de l’énergie, notamment dans les centres de données. Ce site Web citait l'annonce officielle selon laquelle, lors de cette acquisition, l'équipe d'ingénierie de Tagore Technology rejoindrait GF pour développer davantage la technologie du nitrure de gallium. g
