Maison développement back-end Tutoriel Python De quels mécanismes de mise en cache dispose Python ?

De quels mécanismes de mise en cache dispose Python ?

Nov 16, 2023 am 11:02 AM
python 缓存机制

De quels mécanismes de mise en cache dispose Python ? Cache mémoire, cache de structure de données, décorateur de cache, cache proxy d'objet, bibliothèque de cache, cache distribué, stratégie de cache, mécanisme d'invalidation du cache, compression et encodage, etc. Introduction détaillée : 1. Cache mémoire, le mécanisme de gestion de la mémoire de Python mettra automatiquement en cache les objets fréquemment utilisés pour réduire le coût de l'allocation de mémoire et du garbage collection ; 2. Cache de structure de données, les structures de données intégrées de Python, telles que les listes, les tuples et les dictionnaires. , dispose d'un mécanisme de mise en cache efficace ; 3. Décorateur de cache, décorateur Python, etc.

De quels mécanismes de mise en cache dispose Python ?

Le système d'exploitation de ce tutoriel : système Windows 10, Python version 3.11.4, ordinateur DELL G3.

Python, en tant que langage de programmation de haut niveau, fournit une variété de mécanismes de mise en cache pour améliorer les performances et la vitesse de réponse. Voici le contenu principal du mécanisme de mise en cache de Python :

1. Cache mémoire : le mécanisme de gestion de la mémoire de Python met automatiquement en cache les objets fréquemment utilisés pour réduire le coût de l'allocation de mémoire et du garbage collection. Lorsqu'un objet est utilisé fréquemment, Python le stocke en mémoire afin que les requêtes ultérieures puissent obtenir l'objet plus rapidement. Ce mécanisme de mise en cache est automatique et les développeurs n'ont pas besoin d'écrire explicitement du code de mise en cache.

2. Mise en cache de la structure des données : les structures de données intégrées de Python, telles que les listes, les tuples et les dicts, disposent de mécanismes de mise en cache efficaces. Lorsqu'une liste, un tuple ou un dictionnaire est modifié, Python crée un nouvel objet et pointe une référence à l'objet d'origine vers le nouvel objet. De cette façon, les modifications apportées à la liste, au tuple ou au dictionnaire n'affecteront pas la référence de l'objet d'origine, obtenant ainsi l'effet de cache.

3. Décorateur de cache : le décorateur de Python peut être utilisé pour envelopper des fonctions ou des méthodes afin d'ajouter des fonctionnalités ou un comportement supplémentaires. À l’aide du décorateur de cache, la sortie d’une fonction peut être mise en cache afin que le résultat mis en cache puisse être renvoyé directement lors de son prochain appel. Les décorateurs de cache courants incluent functools.lru_cache et cachetools.cached.

4. Mise en cache du proxy d'objet : Python peut implémenter la mise en cache via un proxy d'objet. Un proxy d'objet est une classe qui encapsule un autre objet et est responsable de la gestion et de la mise en cache des propriétés de cet objet. Lors de l'accès à l'attribut, si l'attribut est déjà dans le cache, le résultat mis en cache est renvoyé directement, sinon la valeur de l'attribut est calculée et mise en cache. Cette approche réduit les doubles calculs et les allocations de mémoire inutiles.

5. Bibliothèque de cache : Python dispose de nombreuses bibliothèques tierces qui peuvent être utilisées pour implémenter des fonctions de mise en cache, telles que Beaker, Cachetools et PyMemcache. Ces bibliothèques offrent plus de flexibilité et d'extensibilité et peuvent être personnalisées en fonction de besoins spécifiques. Ils prennent généralement en charge plusieurs stratégies de mise en cache, telles que LRU (la moins récemment utilisée), LFU (la moins fréquemment utilisée), etc.

6. Cache distribué : pour les grandes applications ou les systèmes distribués, un cache distribué peut être nécessaire pour améliorer l'évolutivité et la tolérance aux pannes. La mise en cache distribuée met en cache les données sur plusieurs nœuds afin que les données mises en cache puissent être partagées entre plusieurs serveurs. Les solutions de mise en cache distribuées courantes incluent Redis, Memcached, Cassandra, etc.

7. Stratégie de mise en cache : différentes stratégies de mise en cache peuvent être sélectionnées en fonction des différentes exigences et scénarios de l'application. Les stratégies de mise en cache courantes incluent les moins récemment utilisées (LRU), les moins fréquemment utilisées (LFU), etc. Ces politiques peuvent déterminer quelles entrées doivent être remplacées ou supprimées en fonction de facteurs tels que la fréquence d'accès, la taille des ressources, le type de ressource, etc.

8. Mécanisme d'invalidation du cache : les données dans le cache peuvent devenir invalides pour diverses raisons, telles que la mise à jour des données, le délai d'expiration, etc. Afin de garantir la cohérence du cache, un mécanisme d'invalidation du cache doit être utilisé pour gérer les situations non valides. Les mécanismes de défaillance courants incluent l'échec de synchronisation, l'échec de compteur, l'échec de condition, etc.

9. Compression et encodage : pour les données volumineuses ou la transmission réseau, vous pouvez envisager de compresser et d'encoder les données pour réduire le volume de transmission et la consommation de bande passante du réseau. Python fournit une variété de bibliothèques de compression et d'encodage, telles que gzip, bz2, zlib, etc. Dans le même temps, le client peut également décoder et décompresser la réponse pour une utilisation locale.

Pour résumer, Python fournit une variété de mécanismes de mise en cache pour améliorer les performances et la vitesse de réponse. Ces mécanismes incluent le cache mémoire, le cache de structure de données, le décorateur de cache, le cache proxy d'objet, la bibliothèque de cache, le cache distribué, la stratégie de cache, le mécanisme d'invalidation du cache, la compression et l'encodage, etc. Le choix d'un mécanisme de mise en cache approprié en fonction des besoins et des scénarios commerciaux spécifiques peut aider les développeurs à optimiser les performances et la vitesse de réponse des applications Python.

Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Déclaration de ce site Web
Le contenu de cet article est volontairement contribué par les internautes et les droits d'auteur appartiennent à l'auteur original. Ce site n'assume aucune responsabilité légale correspondante. Si vous trouvez un contenu suspecté de plagiat ou de contrefaçon, veuillez contacter admin@php.cn

Outils d'IA chauds

Undresser.AI Undress

Undresser.AI Undress

Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover

AI Clothes Remover

Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool

Undress AI Tool

Images de déshabillage gratuites

Clothoff.io

Clothoff.io

Dissolvant de vêtements AI

AI Hentai Generator

AI Hentai Generator

Générez AI Hentai gratuitement.

Article chaud

R.E.P.O. Crystals d'énergie expliqués et ce qu'ils font (cristal jaune)
4 Il y a quelques semaines By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Meilleurs paramètres graphiques
4 Il y a quelques semaines By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Comment réparer l'audio si vous n'entendez personne
4 Il y a quelques semaines By 尊渡假赌尊渡假赌尊渡假赌
WWE 2K25: Comment déverrouiller tout dans Myrise
1 Il y a quelques mois By 尊渡假赌尊渡假赌尊渡假赌

Outils chauds

Bloc-notes++7.3.1

Bloc-notes++7.3.1

Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise

SublimeText3 version chinoise

Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1

Envoyer Studio 13.0.1

Puissant environnement de développement intégré PHP

Dreamweaver CS6

Dreamweaver CS6

Outils de développement Web visuel

SublimeText3 version Mac

SublimeText3 version Mac

Logiciel d'édition de code au niveau de Dieu (SublimeText3)

HaDIDB: une base de données légère et évolutive horizontalement dans Python HaDIDB: une base de données légère et évolutive horizontalement dans Python Apr 08, 2025 pm 06:12 PM

HaDIDB: Une base de données Python évolutive de haut niveau légère HaDIDB (HaDIDB) est une base de données légère écrite en Python, avec un niveau élevé d'évolutivité. Installez HaDIDB à l'aide de l'installation PIP: PiPinStallHaDIDB User Management Créer un utilisateur: CreateUser () pour créer un nouvel utilisateur. La méthode Authentication () authentifie l'identité de l'utilisateur. FromHadidb.OperationMportUserUser_OBJ = User ("Admin", "Admin") User_OBJ.

Python: Explorer ses applications principales Python: Explorer ses applications principales Apr 10, 2025 am 09:41 AM

Python est largement utilisé dans les domaines du développement Web, de la science des données, de l'apprentissage automatique, de l'automatisation et des scripts. 1) Dans le développement Web, les cadres Django et Flask simplifient le processus de développement. 2) Dans les domaines de la science des données et de l'apprentissage automatique, les bibliothèques Numpy, Pandas, Scikit-Learn et Tensorflow fournissent un fort soutien. 3) En termes d'automatisation et de script, Python convient aux tâches telles que les tests automatisés et la gestion du système.

Le plan Python de 2 heures: une approche réaliste Le plan Python de 2 heures: une approche réaliste Apr 11, 2025 am 12:04 AM

Vous pouvez apprendre les concepts de programmation de base et les compétences de Python dans les 2 heures. 1. Apprenez les variables et les types de données, 2. Flux de contrôle maître (instructions et boucles conditionnelles), 3. Comprenez la définition et l'utilisation des fonctions, 4. Démarrez rapidement avec la programmation Python via des exemples simples et des extraits de code.

Méthode de Navicat pour afficher le mot de passe de la base de données MongoDB Méthode de Navicat pour afficher le mot de passe de la base de données MongoDB Apr 08, 2025 pm 09:39 PM

Il est impossible de visualiser le mot de passe MongoDB directement via NAVICAT car il est stocké sous forme de valeurs de hachage. Comment récupérer les mots de passe perdus: 1. Réinitialiser les mots de passe; 2. Vérifiez les fichiers de configuration (peut contenir des valeurs de hachage); 3. Vérifiez les codes (May Code Hardcode).

Comment utiliser Aws Glue Crawler avec Amazon Athena Comment utiliser Aws Glue Crawler avec Amazon Athena Apr 09, 2025 pm 03:09 PM

En tant que professionnel des données, vous devez traiter de grandes quantités de données provenant de diverses sources. Cela peut poser des défis à la gestion et à l'analyse des données. Heureusement, deux services AWS peuvent aider: AWS Glue et Amazon Athena.

Comment optimiser les performances MySQL pour les applications de haute charge? Comment optimiser les performances MySQL pour les applications de haute charge? Apr 08, 2025 pm 06:03 PM

Guide d'optimisation des performances de la base de données MySQL dans les applications à forte intensité de ressources, la base de données MySQL joue un rôle crucial et est responsable de la gestion des transactions massives. Cependant, à mesure que l'échelle de l'application se développe, les goulots d'étranglement des performances de la base de données deviennent souvent une contrainte. Cet article explorera une série de stratégies efficaces d'optimisation des performances MySQL pour garantir que votre application reste efficace et réactive dans des charges élevées. Nous combinerons des cas réels pour expliquer les technologies clés approfondies telles que l'indexation, l'optimisation des requêtes, la conception de la base de données et la mise en cache. 1. La conception de l'architecture de la base de données et l'architecture optimisée de la base de données sont la pierre angulaire de l'optimisation des performances MySQL. Voici quelques principes de base: sélectionner le bon type de données et sélectionner le plus petit type de données qui répond aux besoins peut non seulement économiser un espace de stockage, mais également améliorer la vitesse de traitement des données.

Comment démarrer le serveur avec redis Comment démarrer le serveur avec redis Apr 10, 2025 pm 08:12 PM

Les étapes pour démarrer un serveur Redis incluent: Installez Redis en fonction du système d'exploitation. Démarrez le service Redis via Redis-Server (Linux / MacOS) ou Redis-Server.exe (Windows). Utilisez la commande redis-Cli Ping (Linux / MacOS) ou redis-Cli.exe Ping (Windows) pour vérifier l'état du service. Utilisez un client redis, tel que redis-cli, python ou node.js pour accéder au serveur.

Comment lire la file d'attente redis Comment lire la file d'attente redis Apr 10, 2025 pm 10:12 PM

Pour lire une file d'attente à partir de Redis, vous devez obtenir le nom de la file d'attente, lire les éléments à l'aide de la commande LPOP et traiter la file d'attente vide. Les étapes spécifiques sont les suivantes: Obtenez le nom de la file d'attente: Nommez-le avec le préfixe de "Fitre:" tel que "Fitre: My-Quyue". Utilisez la commande LPOP: éjectez l'élément de la tête de la file d'attente et renvoyez sa valeur, telle que la file d'attente LPOP: My-Queue. Traitement des files d'attente vides: si la file d'attente est vide, LPOP renvoie NIL et vous pouvez vérifier si la file d'attente existe avant de lire l'élément.

See all articles