Maison développement back-end Tutoriel Python Quelle est la méthode d'opération de découpage numpy ?

Quelle est la méthode d'opération de découpage numpy ?

Nov 22, 2023 pm 01:21 PM
切片 numpy

Méthode d'opération de découpage Numpy : 1. Découpage de tableau unidimensionnel, vous pouvez utiliser une méthode similaire au découpage de liste en Python pour effectuer des opérations de découpage ; 2. Découpage de tableau bidimensionnel, vous pouvez utiliser deux valeurs d'index pour effectuer des opérations de découpage, d'abord La première valeur d'index représente la ligne et la deuxième valeur d'index représente la colonne ; 3. Découpage de tableau multidimensionnel, vous pouvez utiliser plusieurs valeurs d'index pour effectuer des opérations de découpage, chaque valeur d'index correspond à une dimension ; 4. L'index booléen, qui est effectué via la méthode de filtrage des valeurs booléennes ; 5. Le découpage d'index conditionnel est une méthode de filtrage à travers des expressions conditionnelles, etc.

Quelle est la méthode d'opération de découpage numpy ?

Le système d'exploitation de ce tutoriel : système Windows 10, Python version 3.11.4, ordinateur Dell G3.

Numpy est une bibliothèque de calcul numérique open source qui fournit de riches fonctions d'opération de tableau. Parmi elles, l'opération de découpage est l'une des fonctions couramment utilisées dans numpy. L'opération de découpage peut obtenir un sous-ensemble du tableau par indexation et peut effectuer des opérations telles que le découpage en tranches, le découpage en dés et la découpe de lignes sur le tableau. Cet article présentera en détail la méthode d'opération de découpage de numpy.

Dans numpy, les opérations de découpage peuvent être utilisées pour les tableaux unidimensionnels, les tableaux bidimensionnels et les tableaux multidimensionnels. Les méthodes d'opération de découpage dans ces trois cas sont présentées ci-dessous.

Opération de découpage de tableau unidimensionnel :

Pour les tableaux unidimensionnels, vous pouvez effectuer des opérations de découpage d'une manière similaire au découpage de liste en Python.

import numpy as np
a = np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
# 获取数组中的前三个元素
b = a[:3]
print(b)  # 输出: [0 1 2]
# 获取数组中的第三个到第六个元素
c = a[2:6]
print(c)  # 输出: [2 3 4 5]
# 获取数组中的倒数三个元素
d = a[-3:]
print(d)  # 输出: [7 8 9]
Copier après la connexion

Opération de découpage de tableau bidimensionnel :

Pour un tableau bidimensionnel, vous pouvez utiliser deux valeurs d'index ​​​​pour effectuer des opérations de découpage, la première valeur d'index représente la ligne et la deuxième valeur d'index représente la colonne.

import numpy as np
a = np.array([[0, 1, 2, 3],
              [4, 5, 6, 7],
              [8, 9, 10, 11]])
# 获取数组的第一行
b = a[0, :]
print(b)  # 输出: [0 1 2 3]
# 获取数组的第二列
c = a[:, 1]
print(c)  # 输出: [1 5 9]
# 获取数组的前两行和前三列
d = a[:2, :3]
print(d)  # 输出: [[0 1 2]
          #        [4 5 6]]
Copier après la connexion

Opération de découpage de tableau multidimensionnel :

Pour les tableaux multidimensionnels, plusieurs valeurs d'index peuvent être utilisées pour effectuer des opérations de découpage, chaque valeur d'index correspondant à une dimension.

import numpy as np
a = np.array([[[0, 1, 2],
               [3, 4, 5],
               [6, 7, 8]],
              [[9, 10, 11],
               [12, 13, 14],
               [15, 16, 17]]])
# 获取数组的第一个元素
b = a[0, :, :]
print(b)  # 输出: [[0 1 2]
          #        [3 4 5]
          #        [6 7 8]]
# 获取数组的第二个元素的第一行和第二行
c = a[1, :2, :]
print(c)  # 输出: [[ 9 10 11]
          #        [12 13 14]]
Copier après la connexion

En plus d'utiliser des index entiers pour les opérations de découpage, vous pouvez également utiliser des index booléens et des index conditionnels pour les opérations de découpage.

Opération de découpage d'index booléen :

L'index booléen est un moyen de filtrer par valeurs booléennes, qui peut être utilisé pour obtenir des éléments d'un tableau qui remplissent certaines conditions.

import numpy as np
a = np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
# 获取数组中大于5的元素
b = a[a > 5]
print(b)  # 输出: [6 7 8 9]
Copier après la connexion

Opération de découpage d'index conditionnel :

L'index conditionnel est un moyen de filtrer les expressions conditionnelles, qui peuvent être utilisées pour obtenir des éléments d'un tableau qui remplissent certaines conditions.

import numpy as np
a = np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
# 获取数组中大于5的元素的索引值
b = np.where(a > 5)
print(b)  # 输出: (array([6, 7, 8, 9]),)
Copier après la connexion

L'opération de découpage de Numpy offre un moyen flexible et efficace d'obtenir un sous-ensemble d'un tableau. Qu'il s'agisse d'un tableau unidimensionnel, d'un tableau bidimensionnel ou d'un tableau multidimensionnel, vous pouvez utiliser des opérations de découpage pour extraire et filtrer les données. Les opérations de découpage prennent non seulement en charge les index entiers, mais également les index booléens et les index conditionnels, qui peuvent répondre à divers besoins. En utilisant rationnellement les opérations de découpage de numpy, l'efficacité et la flexibilité du traitement des données peuvent être améliorées.

Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Déclaration de ce site Web
Le contenu de cet article est volontairement contribué par les internautes et les droits d'auteur appartiennent à l'auteur original. Ce site n'assume aucune responsabilité légale correspondante. Si vous trouvez un contenu suspecté de plagiat ou de contrefaçon, veuillez contacter admin@php.cn

Article chaud

Repo: Comment relancer ses coéquipiers
3 Il y a quelques semaines By 尊渡假赌尊渡假赌尊渡假赌
Combien de temps faut-il pour battre Split Fiction?
3 Il y a quelques semaines By DDD
Hello Kitty Island Adventure: Comment obtenir des graines géantes
3 Il y a quelques semaines By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Crystals d'énergie expliqués et ce qu'ils font (cristal jaune)
1 Il y a quelques semaines By 尊渡假赌尊渡假赌尊渡假赌

Article chaud

Repo: Comment relancer ses coéquipiers
3 Il y a quelques semaines By 尊渡假赌尊渡假赌尊渡假赌
Combien de temps faut-il pour battre Split Fiction?
3 Il y a quelques semaines By DDD
Hello Kitty Island Adventure: Comment obtenir des graines géantes
3 Il y a quelques semaines By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Crystals d'énergie expliqués et ce qu'ils font (cristal jaune)
1 Il y a quelques semaines By 尊渡假赌尊渡假赌尊渡假赌

Tags d'article chaud

Bloc-notes++7.3.1

Bloc-notes++7.3.1

Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise

SublimeText3 version chinoise

Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1

Envoyer Studio 13.0.1

Puissant environnement de développement intégré PHP

Dreamweaver CS6

Dreamweaver CS6

Outils de développement Web visuel

SublimeText3 version Mac

SublimeText3 version Mac

Logiciel d'édition de code au niveau de Dieu (SublimeText3)

Mise à niveau de la version numpy : un guide détaillé et facile à suivre Mise à niveau de la version numpy : un guide détaillé et facile à suivre Feb 25, 2024 pm 11:39 PM

Mise à niveau de la version numpy : un guide détaillé et facile à suivre

Guide étape par étape sur la façon d'installer NumPy dans PyCharm et de tirer le meilleur parti de ses fonctionnalités Guide étape par étape sur la façon d'installer NumPy dans PyCharm et de tirer le meilleur parti de ses fonctionnalités Feb 18, 2024 pm 06:38 PM

Guide étape par étape sur la façon d'installer NumPy dans PyCharm et de tirer le meilleur parti de ses fonctionnalités

Découvrez la méthode secrète pour désinstaller rapidement la bibliothèque NumPy Découvrez la méthode secrète pour désinstaller rapidement la bibliothèque NumPy Jan 26, 2024 am 08:32 AM

Découvrez la méthode secrète pour désinstaller rapidement la bibliothèque NumPy

Guide d'installation de Numpy : résoudre les problèmes d'installation en un seul article Guide d'installation de Numpy : résoudre les problèmes d'installation en un seul article Feb 21, 2024 pm 08:15 PM

Guide d'installation de Numpy : résoudre les problèmes d'installation en un seul article

Guide de désinstallation de la bibliothèque NumPy pour éviter les conflits et les erreurs Guide de désinstallation de la bibliothèque NumPy pour éviter les conflits et les erreurs Jan 26, 2024 am 10:22 AM

Guide de désinstallation de la bibliothèque NumPy pour éviter les conflits et les erreurs

Analyse approfondie des opérations de découpage numpy et de leur application en combat réel Analyse approfondie des opérations de découpage numpy et de leur application en combat réel Jan 26, 2024 am 08:52 AM

Analyse approfondie des opérations de découpage numpy et de leur application en combat réel

Conversion entre Tensor et Numpy : exemples et applications Conversion entre Tensor et Numpy : exemples et applications Jan 26, 2024 am 11:03 AM

Conversion entre Tensor et Numpy : exemples et applications

PyCharm vs NumPy : conseils clés pour optimiser l'efficacité de la programmation Python PyCharm vs NumPy : conseils clés pour optimiser l'efficacité de la programmation Python Feb 19, 2024 pm 01:43 PM

PyCharm vs NumPy : conseils clés pour optimiser l'efficacité de la programmation Python

See all articles