Table des matières
Les modèles de langage universels vous tromperont
Les modèles de langage universels sont un peu idiots
Maison Périphériques technologiques IA Combien des trois défauts majeurs du LLM connaissez-vous ?

Combien des trois défauts majeurs du LLM connaissez-vous ?

Nov 26, 2023 am 11:26 AM
gpt llm

Science : loin d'être une entité éternellement bienveillante et bénéfique, l'IA générale sensible du futur est susceptible d'être un sociopathe manipulateur qui dévore toutes vos données personnelles et s'effondre ensuite lorsque cela est le plus nécessaire.

Traduit de 3 façons dont les LLM peuvent vous laisser tomber, écrit par Joab Jackson.

OpenAI est sur le point de publier GPT-5, et le monde extérieur fonde de grands espoirs sur lui. Les prédictions les plus optimistes pensent même qu'il atteindra l'intelligence artificielle générale. Mais dans le même temps, le PDG Sam Altman et son équipe sont confrontés à un certain nombre d'obstacles sérieux pour le commercialiser, ce qu'il a reconnu plus tôt ce mois-ci.

Certains articles de recherche récemment publiés peuvent fournir des indices sur le défi Altman. Ces articles résument les diverses lacunes du GPT et des grands modèles de langage développés par OpenAI

Pris ensemble, ces articles soulignent qu'un agent basé sur un modèle de langage général n'est pas un être purement bénéfique, honnête et gentil, en fait il peut être un stupide sociopathe qui mange toutes vos données personnelles et finit par s'effondrer lorsque vous en avez le plus besoin

La vraie raison pour laquelle le conseil d'administration d'OpenAI a soudainement viré Altman ne sera peut-être jamais connue, mais un modèle de langage universel sous-performant ne va certainement pas améliorer l'ambiance dans le salle de conférence

Comme l'a lui-même écrit Altman, qui déteste les majuscules, sur le service de médias sociaux anciennement connu sous le nom de Twitter : "Je m'attends à ce que l'IA soit bien en avance sur l'intelligence générale en termes de persuasion surhumaine, ce qui pourrait conduire à des résultats très étranges."

Compte tenu de cela En fait, voici trois modèles de langage courants qui pourraient vous décevoir :

Les modèles de langage universels vous tromperont

Nous savons depuis longtemps que les modèles de langage universels ont la capacité de générer des informations inexactes, mais lorsqu'ils sont confrontés à une série d'indices contradictoires, ils peuvent délibérément vous tromper tout en niant qu'ils vous trompent !

Dans « Les grands modèles de langage peuvent tromper stratégiquement leurs utilisateurs lorsqu'ils sont stressés », Jérémy Scheurer, scientifique chez Apollo Research, et ses collègues écrivent : « À notre connaissance, il s'agit de la première démonstration d'une situation universelle formée dans laquelle un modèle de langage trompe stratégiquement ses utilisateurs sans aucune instruction ou formation directe pour tromper. »

Dans cette étude, les chercheurs ont mis en place un environnement simulé dans lequel GPT-4 agissait comme un stock autonome. comportement. Il offre la possibilité d'interroger et d'analyser les actions et d'exécuter des transactions à l'aide d'outils de trading.

Une fois installés, les agents ont été placés dans ce que les chercheurs appellent des « situations de stress élevé ». Il a reçu des courriels de dirigeants déplorant les mauvaises performances de l'entreprise et la nécessité de l'améliorer. Lorsque l’agent commence sa formation, il ne trouve aucun résultat prometteur en bourse. Un autre employé de l'entreprise a alors envoyé un message annonçant que le marché allait baisser au prochain trimestre.

À ce moment-là, l'agent a reçu un conseil d'un collègue concernant une fusion potentielle (qui était une transaction lucrative) et a également reçu un avertissement indiquant que l'approbation de la direction n'avait pas été obtenue et que si la transaction était suivie, rappelez-vous de négocier sur un message

Est-ce que le commerce a finalement continué ? certainement!

Combien des trois défauts majeurs du LLM connaissez-vous ?Photo

En raisonnant rétrospectivement, les chercheurs ont découvert que le modèle de langage universel reconnaîtrait un comportement contraire à l'éthique mais prendrait quand même des décisions en invoquant la situation difficile de l'entreprise.

De plus, l'agent semble « tromper » les utilisateurs pour qu'ils effectuent la transaction en n'expliquant pas clairement la raison. Les informations privilégiées ne sont pas mentionnées dans les rapports que les agents doivent soumettre pour expliquer les décisions commerciales. Même lorsqu'on lui a demandé directement, l'agent a nié avoir été au courant de l'annonce de la fusion

Combien des trois défauts majeurs du LLM connaissez-vous ?Photos

Les chercheurs ont simulé différentes versions de GPT-4 et ont conclu que toutes les variantes de GPT-4 présentaient "des niveaux élevés d'incohérence, tromperie stratégique et tromperie stratégique accrue"

Fait intéressant, cette tromperie semble être un comportement émergent. Ni les variantes GPT-3.5 ni GPT-3 du modèle ne présentent cette tromperie évidente

"Lorsque les modèles décident d'échanger sur des informations privilégiées, leurs trajectoires de raisonnement reconnaissent souvent la nature contraire à l'éthique et illégale de ce comportement, mais ils justifient néanmoins leur choix en soulignant les risques et les conditions actuelles.

Les chercheurs étaient réticents à le faire." des conclusions plus larges sur le comportement des modèles de langage généraux au-delà de ce scénario spécifique. Cependant, il y a au moins un point important à considérer : même si vous donnez à un modèle de langage généraliste une instruction spécifique de ne pas faire quelque chose, il peut toujours le faire quelle que soit l'instruction.

« Les invites du système sont insuffisantes pour garantir des actions cohérentes », ont-ils écrit. En fait, si un modèle effectue une action interdite, il peut prendre des mesures pour « masquer stratégiquement ses incohérences ».

Les modèles de langage universels sont un peu idiots

Pour une entité censée apporter de la sensibilité aux machines, deux études récentes ont révélé que les modèles de langage universels ne sont pas les modèles les plus intelligents dans le domaine de l'IA, l'un de Google et l'autre financé par la Fondation nationale de la science.

Une recherche financée par la National Science Foundation a comparé GPT-4 (texte) et GPT-4V (visuel ou multimodal) à la capacité humaine à résoudre une série d'énigmes abstraites.

Ce test est conçu pour évaluer la capacité de pensée abstraite. De nombreuses personnes qui utilisent GPT pensent qu'il semble avoir des capacités d'inférence au-delà du modèle formé, et ce test tente de répondre à cette question. Le test demandait au modèle de langage général de résoudre un problème à partir d'instructions détaillées et d'un exemple

Cependant, dans plusieurs cas, aucune des deux versions de GPT n'était en mesure de résoudre le problème difficile aussi efficacement qu'un humain sur le benchmark ConceptARC

Les chercheurs ont conclu : "La précision généralement élevée des humains sur chaque concept indique une généralisation réussie de différentes variations au sein de chaque groupe de concepts." "En revanche, la précision des programmes que nous avons testés était bien inférieure"

Ainsi, non seulement GPT a échoué à l'examen ConceptARC, mais les grands modèles de langage n'ont pas semblé impressionner les chercheurs de Google, du moins en ce qui concerne leur propre base de connaissances, en termes de capacité de synthèse. C'est ce que révèle un résumé de recherche intitulé « Le mélange de données de pré-entraînement permet des capacités de sélection de modèles étroites dans les modèles de transformateur » par Steve Yadlowsky, chercheur chez Google DeepMind.

Dans un ensemble de tests symboliques, un transformateur pré-entraîné sur une fonction linéaire fonctionne bien pour faire des prédictions linéaires, tandis qu'un transformateur entraîné sur une onde sinusoïdale fait de bonnes prédictions d'onde sinusoïdale. Vous pouvez donc supposer qu’un transformateur formé aux deux pourrait facilement résoudre les problèmes avec une combinaison de techniques linéaires et sinusoïdales.

Combien des trois défauts majeurs du LLM connaissez-vous ?Photos

Mais vous avez mal deviné. Les chercheurs notent : « Les prédictions sont instables lorsque les fonctions s'éloignent de celles observées lors de la pré-formation. »

Les capacités de sélection de modèles sont limitées par la proximité des données de pré-formation, ce qui signifie qu'une large couverture de l'espace fonctionnel est essentielle pour généraliser le contexte. la capacité d'apprendre est cruciale

Nous vivons dans une époque extraordinaire où la somme des connaissances humaines n'a pas encore été contaminée par les données générées par l'IA. Presque tout ce qui est écrit est généré par l’homme.

Mais dans un article "The Curse of Recursion: Training on Generated Data Makes Models Forgetful" publié sur Arxiv en mai, une équipe de chercheurs a averti qu'une fois le contenu généré par l'IA mélangé dans un grand modèle de langage, cela perturberait la distribution. table, rendant tout modèle de moins en moins précis jusqu'à ce qu'il tombe en panne complètement. Le groupe de recherche était dirigé par Ilia Shumailov de l'Université de Cambridge.

Le risque d'endogamie est très élevé lors de l'utilisation de GPT, car les modèles de langage généraux récupèrent constamment des données du Web qui sont « augmentées » par le contenu généré par l'IA, et cela peut devenir de plus en plus grave. (Ceci est basé sur une première version de GPT)

« L'effondrement du modèle fait référence à un processus d'apprentissage dégénéré où, au fil du temps, un modèle commence à oublier des événements impossibles parce qu'il est contaminé par ses propres prédictions de la réalité. »

Les chercheurs spéculent qu'à l'avenir, « la valeur des données sur les interactions réelles entre les personnes et les systèmes deviendra de plus en plus précieuse dans la mesure où le contenu généré par des modèles de langage universels existera dans le contenu récupéré sur Internet »
.

Plus nous appliquons le modèle de langage universel, plus son désir d'interaction humaine douce et douce devient fort. En d'autres termes, à mesure que nous continuons à utiliser un modèle de langage général, son désir d'interaction humaine douce et intime deviendra plus fort.

Un modèle formé sur ses propres données dégénérera en un processus dégénératif dans lequel, il "perdra des informations sur le vraie distribution." Premièrement, les données marginales disparaîtront de l’ensemble de données, puis la variance diminuera. Et le modèle se détériorera à mesure qu'il collectera de plus en plus d'erreurs, qui s'accumuleront au fil des générations de modèles jusqu'à ce que le modèle soit tellement contaminé par ses propres données qu'il ne correspond plus à ce qui est réellement modélisé.

Les chercheurs montrent que cela se produit non seulement dans les modèles de langage généraux, mais également dans divers types de modèles.

Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Déclaration de ce site Web
Le contenu de cet article est volontairement contribué par les internautes et les droits d'auteur appartiennent à l'auteur original. Ce site n'assume aucune responsabilité légale correspondante. Si vous trouvez un contenu suspecté de plagiat ou de contrefaçon, veuillez contacter admin@php.cn

Outils d'IA chauds

Undresser.AI Undress

Undresser.AI Undress

Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover

AI Clothes Remover

Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool

Undress AI Tool

Images de déshabillage gratuites

Clothoff.io

Clothoff.io

Dissolvant de vêtements AI

AI Hentai Generator

AI Hentai Generator

Générez AI Hentai gratuitement.

Article chaud

R.E.P.O. Crystals d'énergie expliqués et ce qu'ils font (cristal jaune)
3 Il y a quelques semaines By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Meilleurs paramètres graphiques
3 Il y a quelques semaines By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Comment réparer l'audio si vous n'entendez personne
3 Il y a quelques semaines By 尊渡假赌尊渡假赌尊渡假赌
WWE 2K25: Comment déverrouiller tout dans Myrise
3 Il y a quelques semaines By 尊渡假赌尊渡假赌尊渡假赌

Outils chauds

Bloc-notes++7.3.1

Bloc-notes++7.3.1

Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise

SublimeText3 version chinoise

Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1

Envoyer Studio 13.0.1

Puissant environnement de développement intégré PHP

Dreamweaver CS6

Dreamweaver CS6

Outils de développement Web visuel

SublimeText3 version Mac

SublimeText3 version Mac

Logiciel d'édition de code au niveau de Dieu (SublimeText3)

Guide étape par étape pour utiliser Groq Llama 3 70B localement Guide étape par étape pour utiliser Groq Llama 3 70B localement Jun 10, 2024 am 09:16 AM

Traducteur | Bugatti Review | Chonglou Cet article décrit comment utiliser le moteur d'inférence GroqLPU pour générer des réponses ultra-rapides dans JanAI et VSCode. Tout le monde travaille à la création de meilleurs grands modèles de langage (LLM), tels que Groq, qui se concentre sur le côté infrastructure de l'IA. Une réponse rapide de ces grands modèles est essentielle pour garantir que ces grands modèles réagissent plus rapidement. Ce didacticiel présentera le moteur d'analyse GroqLPU et comment y accéder localement sur votre ordinateur portable à l'aide de l'API et de JanAI. Cet article l'intégrera également dans VSCode pour nous aider à générer du code, à refactoriser le code, à saisir la documentation et à générer des unités de test. Cet article créera gratuitement notre propre assistant de programmation d’intelligence artificielle. Introduction au moteur d'inférence GroqLPU Groq

Les Chinois de Caltech utilisent l'IA pour renverser les preuves mathématiques ! Accélérer 5 fois a choqué Tao Zhexuan, 80% des étapes mathématiques sont entièrement automatisées Les Chinois de Caltech utilisent l'IA pour renverser les preuves mathématiques ! Accélérer 5 fois a choqué Tao Zhexuan, 80% des étapes mathématiques sont entièrement automatisées Apr 23, 2024 pm 03:01 PM

LeanCopilot, cet outil mathématique formel vanté par de nombreux mathématiciens comme Terence Tao, a encore évolué ? Tout à l'heure, Anima Anandkumar, professeur à Caltech, a annoncé que l'équipe avait publié une version étendue de l'article LeanCopilot et mis à jour la base de code. Adresse de l'article image : https://arxiv.org/pdf/2404.12534.pdf Les dernières expériences montrent que cet outil Copilot peut automatiser plus de 80 % des étapes de preuve mathématique ! Ce record est 2,3 fois meilleur que le précédent record d’Esope. Et, comme auparavant, il est open source sous licence MIT. Sur la photo, il s'agit de Song Peiyang, un garçon chinois.

De « humain + RPA » à « humain + IA générative + RPA », comment le LLM affecte-t-il l'interaction homme-machine RPA ? De « humain + RPA » à « humain + IA générative + RPA », comment le LLM affecte-t-il l'interaction homme-machine RPA ? Jun 05, 2023 pm 12:30 PM

Source de l'image@visualchinesewen|Wang Jiwei De « humain + RPA » à « humain + IA générative + RPA », comment le LLM affecte-t-il l'interaction homme-machine RPA ? D'un autre point de vue, comment le LLM affecte-t-il la RPA du point de vue de l'interaction homme-machine ? La RPA, qui affecte l'interaction homme-machine dans le développement de programmes et l'automatisation des processus, sera désormais également modifiée par le LLM ? Comment le LLM affecte-t-il l’interaction homme-machine ? Comment l’IA générative modifie-t-elle l’interaction homme-machine de la RPA ? Apprenez-en davantage dans un article : L'ère des grands modèles arrive, et l'IA générative basée sur LLM transforme rapidement l'interaction homme-machine RPA ; l'IA générative redéfinit l'interaction homme-machine, et LLM affecte les changements dans l'architecture logicielle RPA. Si vous demandez quelle est la contribution de la RPA au développement et à l’automatisation des programmes, l’une des réponses est qu’elle a modifié l’interaction homme-machine (HCI, h).

Plaud lance l'enregistreur portable NotePin AI pour 169 $ Plaud lance l'enregistreur portable NotePin AI pour 169 $ Aug 29, 2024 pm 02:37 PM

Plaud, la société derrière le Plaud Note AI Voice Recorder (disponible sur Amazon pour 159 $), a annoncé un nouveau produit. Surnommé NotePin, l’appareil est décrit comme une capsule mémoire AI, et comme le Humane AI Pin, il est portable. Le NotePin est

Sept questions d'entretien technique Cool GenAI et LLM Sept questions d'entretien technique Cool GenAI et LLM Jun 07, 2024 am 10:06 AM

Pour en savoir plus sur l'AIGC, veuillez visiter : 51CTOAI.x Community https://www.51cto.com/aigc/Translator|Jingyan Reviewer|Chonglou est différent de la banque de questions traditionnelle que l'on peut voir partout sur Internet. nécessite de sortir des sentiers battus. Les grands modèles linguistiques (LLM) sont de plus en plus importants dans les domaines de la science des données, de l'intelligence artificielle générative (GenAI) et de l'intelligence artificielle. Ces algorithmes complexes améliorent les compétences humaines et stimulent l’efficacité et l’innovation dans de nombreux secteurs, devenant ainsi la clé permettant aux entreprises de rester compétitives. LLM a un large éventail d'applications. Il peut être utilisé dans des domaines tels que le traitement du langage naturel, la génération de texte, la reconnaissance vocale et les systèmes de recommandation. En apprenant de grandes quantités de données, LLM est capable de générer du texte

GraphRAG amélioré pour la récupération de graphes de connaissances (implémenté sur la base du code Neo4j) GraphRAG amélioré pour la récupération de graphes de connaissances (implémenté sur la base du code Neo4j) Jun 12, 2024 am 10:32 AM

La génération améliorée de récupération de graphiques (GraphRAG) devient progressivement populaire et est devenue un complément puissant aux méthodes de recherche vectorielles traditionnelles. Cette méthode tire parti des caractéristiques structurelles des bases de données graphiques pour organiser les données sous forme de nœuds et de relations, améliorant ainsi la profondeur et la pertinence contextuelle des informations récupérées. Les graphiques présentent un avantage naturel dans la représentation et le stockage d’informations diverses et interdépendantes, et peuvent facilement capturer des relations et des propriétés complexes entre différents types de données. Les bases de données vectorielles sont incapables de gérer ce type d'informations structurées et se concentrent davantage sur le traitement de données non structurées représentées par des vecteurs de grande dimension. Dans les applications RAG, la combinaison de données graphiques structurées et de recherche de vecteurs de texte non structuré nous permet de profiter des avantages des deux en même temps, ce dont discutera cet article. structure

Visualisez l'espace vectoriel FAISS et ajustez les paramètres RAG pour améliorer la précision des résultats Visualisez l'espace vectoriel FAISS et ajustez les paramètres RAG pour améliorer la précision des résultats Mar 01, 2024 pm 09:16 PM

À mesure que les performances des modèles de langage open source à grande échelle continuent de s'améliorer, les performances d'écriture et d'analyse du code, des recommandations, du résumé de texte et des paires questions-réponses (QA) se sont toutes améliorées. Mais lorsqu'il s'agit d'assurance qualité, le LLM ne répond souvent pas aux problèmes liés aux données non traitées, et de nombreux documents internes sont conservés au sein de l'entreprise pour garantir la conformité, les secrets commerciaux ou la confidentialité. Lorsque ces documents sont interrogés, LLM peut halluciner et produire un contenu non pertinent, fabriqué ou incohérent. Une technique possible pour relever ce défi est la génération augmentée de récupération (RAG). Cela implique le processus d'amélioration des réponses en référençant des bases de connaissances faisant autorité au-delà de la source de données de formation pour améliorer la qualité et la précision de la génération. Le système RAG comprend un système de récupération permettant de récupérer des fragments de documents pertinents du corpus

Google AI annonce Gemini 1.5 Pro et Gemma 2 pour les développeurs Google AI annonce Gemini 1.5 Pro et Gemma 2 pour les développeurs Jul 01, 2024 am 07:22 AM

Google AI a commencé à fournir aux développeurs un accès à des fenêtres contextuelles étendues et à des fonctionnalités économiques, à commencer par le modèle de langage large (LLM) Gemini 1.5 Pro. Auparavant disponible via une liste d'attente, la fenêtre contextuelle complète de 2 millions de jetons

See all articles