通过MySQL优化Discuz!的热帖翻页的技巧_MySQL
写在前面:discuz!作为首屈一指的社区系统,为广大站长提供了一站式网站解决方案,而且是开源的(虽然部分代码是加密的),它为这个垂直领域的行业发展作出了巨大贡献。尽管如此,discuz!系统源码中,还是或多或少有些坑。其中最著名的就是默认采用MyISAM引擎,以及基于MyISAM引擎的抢楼功能,session表采用memory引擎等,可以参考后面几篇历史文章。本次我们要说说discuz!在应对热们帖子翻页逻辑功能中的另一个问题。
在我们的环境中,使用的是 MySQL-5.6.6 版本。
在查看帖子并翻页过程中,会产生类似下面这样的SQL:
mysql> desc SELECT * FROM pre_forum_post WHERE tid=8201301 AND `invisible` IN('0','-2') ORDER BY dateline DESC LIMIT 15\G *************************** 1. row *************************** id: 1 select_type: SIMPLE table: pre_forum_post type: ref possible_keys: tid,displayorder,first key: displayorder key_len: 3 ref: const rows: 593371 Extra: Using index condition; Using where; Using filesort
这个SQL执行的代价是:
-- 根据索引访问行记录次数,总体而言算是比较好的状态
| Handler_read_key | 16 |
-- 根据索引顺序访问下一行记录的次数,通常是因为根据索引的范围扫描,或者全索引扫描,总体而言也算是比较好的状态
| Handler_read_next | 329881 |
-- 按照一定顺序读取行记录的总次数。如果需要对结果进行排序,该值通常会比较大。当发生全表扫描或者多表join无法使用索引时,该值也会比较大
| Handler_read_rnd | 15 |
而当遇到热帖需要往后翻很多页时,例如:
mysql> desc SELECT * FROM pre_forum_post WHERE tid=8201301 AND `invisible` IN('0','-2') ORDER BY dateline LIMIT 129860, 15\G *************************** 1. row *************************** id: 1 select_type: SIMPLE table: pre_forum_post type: ref possible_keys: displayorder key: displayorder key_len: 3 ref: const rows: 593371 Extra: Using where; Using filesort
这个SQL执行的代价则变成了(可以看到Handler_read_key、Handler_read_rnd大了很多):
| Handler_read_key | 129876 | -- 因为前面需要跳过很多行记录
| Handler_read_next | 329881 | -- 同上
| Handler_read_rnd | 129875 | -- 因为需要先对很大一个结果集进行排序
可见,遇到热帖时,这个SQL的代价会非常高。如果该热帖被大量的访问历史回复,或者被搜素引擎一直反复请求并且历史回复页时,很容易把数据库服务器直接压垮。
小结:这个SQL不能利用 `displayorder` 索引排序的原因是,索引的第二个列 `invisible` 采用范围查询(RANGE),导致没办法继续利用联合索引完成对 `dateline` 字段的排序需求(而如果是 WHERE tid =? AND invisible IN(?, ?) AND dateline =? 这种情况下是完全可以用到整个联合索引的,注意下二者的区别)。
知道了这个原因,相应的优化解决办法也就清晰了:
创建一个新的索引 idx_tid_dateline,它只包括 tid、dateline 两个列即可(根据其他索引的统计信息,item_type 和 item_id 的基数太低,所以没包含在联合索引中。当然了,也可以考虑一并加上)。
我们再来看下采用新的索引后的执行计划:
mysql> desc SELECT * FROM pre_forum_post WHERE tid=8201301 AND `invisible` IN('0','-2') ORDER BY dateline LIMIT 15\G *************************** 1. row *************************** id: 1 select_type: SIMPLE table: pre_forum_post type: ref possible_keys: tid,displayorder,first,idx_tid_dateline key: idx_tid_dateline key_len: 3 ref: const rows: 703892 Extra: Using where
可以看到,之前存在的 Using filesort 消失了,可以通过索引直接完成排序了。
不过,如果该热帖翻到较旧的历史回复时,相应的SQL还是不能使用新的索引:
mysql> desc SELECT * FROM pre_forum_post WHERE tid=8201301 AND `invisible` IN('0','-2') ORDER BY dateline LIMIT 129860,15\G *************************** 1. row *************************** id: 1 select_type: SIMPLE table: pre_forum_post type: ref possible_keys: tid,displayorder,first,idx_tid_dateline key: displayorder key_len: 3 ref: const rows: 593371 Extra: Using where; Using filesort
对比下如果建议优化器使用新索引的话,其执行计划是怎样的:
mysql> desc SELECT * FROM pre_forum_post use index(idx_tid_dateline) WHERE tid=8201301 AND `invisible` IN('0','-2') ORDER BY dateline LIMIT 129860,15\G *************************** 1. row *************************** id: 1 select_type: SIMPLE table: pre_forum_post type: ref possible_keys: idx_tid_dateline key: idx_tid_dateline key_len: 3 ref: const rows: 703892 Extra: Using where
可以看到,因为查询优化器认为后者需要扫描的行数远比前者多了11万多,因此认为前者效率更高。
事实上,在这个例子里,排序的代价更高,因此我们要优先消除排序,所以应该强制使用新的索引,也就是采用后面的执行计划,在相应的程序中指定索引。
最后,我们来看下热帖翻到很老的历史回复时,两个执行计划分别的profiling统计信息对比:
1、采用旧索引(displayorder):
mysql> SELECT * FROM pre_forum_post WHERE tid=8201301 AND `invisible` IN('0','-2') ORDER BY dateline LIMIT 129860,15; #查看profiling结果 | starting | 0.020203 | | checking permissions | 0.000026 | | Opening tables | 0.000036 | | init | 0.000099 | | System lock | 0.000092 | | optimizing | 0.000038 | | statistics | 0.000123 | | preparing | 0.000043 | | Sorting result | 0.000025 | | executing | 0.000023 | | Sending data | 0.000045 | | Creating sort index | 0.941434 | | end | 0.000077 | | query end | 0.000044 | | closing tables | 0.000038 | | freeing items | 0.000056 | | cleaning up | 0.000040 |
2、如果是采用新索引(idx_tid_dateline):
mysql> SELECT * FROM pre_forum_post use index(idx_tid_dateline) WHERE tid=8201301 AND `invisible` IN('0','-2') ORDER BY dateline LIMIT 129860,15; #对比查看profiling结果 | starting | 0.000151 | | checking permissions | 0.000033 | | Opening tables | 0.000040 | | init | 0.000105 | | System lock | 0.000044 | | optimizing | 0.000038 | | statistics | 0.000188 | | preparing | 0.000044 | | Sorting result | 0.000024 | | executing | 0.000023 | | Sending data | 0.917035 | | end | 0.000074 | | query end | 0.000030 | | closing tables | 0.000036 | | freeing items | 0.000049 | | cleaning up | 0.000032 |
可以看到,效率有了一定提高,不过不是很明显,因为确实需要扫描的数据量更大,所以 Sending data 阶段耗时更多。
这时候,我们可以再参考之前的一个优化方案:[MySQL优化案例]系列 — 分页优化
然后可以将这个SQL改写成下面这样:
mysql> EXPLAIN SELECT * FROM pre_forum_post t1 INNER JOIN ( SELECT id FROM pre_forum_post use index(idx_tid_dateline) WHERE tid=8201301 AND `invisible` IN('0','-2') ORDER BY dateline LIMIT 129860,15) t2 USING (id)\G *************************** 1. row *************************** id: 1 select_type: PRIMARY table: type: ALL possible_keys: NULL key: NULL key_len: NULL ref: NULL rows: 129875 Extra: NULL *************************** 2. row *************************** id: 1 select_type: PRIMARY table: t1 type: eq_ref possible_keys: PRIMARY key: PRIMARY key_len: 4 ref: t2.id rows: 1 Extra: NULL *************************** 3. row *************************** id: 2 select_type: DERIVED table: pre_forum_post type: ref possible_keys: idx_tid_dateline key: idx_tid_dateline key_len: 3 ref: const rows: 703892 Extra: Using where
再看下这个SQL的 profiling 统计信息:
| starting | 0.000209 | | checking permissions | 0.000026 | | checking permissions | 0.000026 | | Opening tables | 0.000101 | | init | 0.000062 | | System lock | 0.000049 | | optimizing | 0.000025 | | optimizing | 0.000037 | | statistics | 0.000106 | | preparing | 0.000059 | | Sorting result | 0.000039 | | statistics | 0.000048 | | preparing | 0.000032 | | executing | 0.000036 | | Sending data | 0.000045 | | executing | 0.000023 | | Sending data | 0.225356 | | end | 0.000067 | | query end | 0.000028 | | closing tables | 0.000023 | | removing tmp table | 0.000029 | | closing tables | 0.000044 | | freeing items | 0.000048 | | cleaning up | 0.000037 |
可以看到,效率提升了1倍以上,还是挺不错的。
最后说明下,这个问题只会在热帖翻页时才会出现,一般只有1,2页回复的帖子如果还采用原来的执行计划,也没什么问题。
因此,建议discuz!官方修改或增加下新索引,并且在代码中判断是否热帖翻页,是的话,就强制使用新的索引,以避免性能问题。

Outils d'IA chauds

Undresser.AI Undress
Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover
Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool
Images de déshabillage gratuites

Clothoff.io
Dissolvant de vêtements AI

AI Hentai Generator
Générez AI Hentai gratuitement.

Article chaud

Outils chauds

Bloc-notes++7.3.1
Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise
Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1
Puissant environnement de développement intégré PHP

Dreamweaver CS6
Outils de développement Web visuel

SublimeText3 version Mac
Logiciel d'édition de code au niveau de Dieu (SublimeText3)

Sujets chauds

Compétences en matière de traitement de la structure des Big Data : Chunking : décomposez l'ensemble de données et traitez-le en morceaux pour réduire la consommation de mémoire. Générateur : générez des éléments de données un par un sans charger l'intégralité de l'ensemble de données, adapté à des ensembles de données illimités. Streaming : lisez des fichiers ou interrogez les résultats ligne par ligne, adapté aux fichiers volumineux ou aux données distantes. Stockage externe : pour les ensembles de données très volumineux, stockez les données dans une base de données ou NoSQL.

Les performances des requêtes MySQL peuvent être optimisées en créant des index qui réduisent le temps de recherche d'une complexité linéaire à une complexité logarithmique. Utilisez PreparedStatements pour empêcher l’injection SQL et améliorer les performances des requêtes. Limitez les résultats des requêtes et réduisez la quantité de données traitées par le serveur. Optimisez les requêtes de jointure, notamment en utilisant des types de jointure appropriés, en créant des index et en envisageant l'utilisation de sous-requêtes. Analyser les requêtes pour identifier les goulots d'étranglement ; utiliser la mise en cache pour réduire la charge de la base de données ; optimiser le code PHP afin de minimiser les frais généraux.

La sauvegarde et la restauration d'une base de données MySQL en PHP peuvent être réalisées en suivant ces étapes : Sauvegarder la base de données : Utilisez la commande mysqldump pour vider la base de données dans un fichier SQL. Restaurer la base de données : utilisez la commande mysql pour restaurer la base de données à partir de fichiers SQL.

Comment insérer des données dans une table MySQL ? Connectez-vous à la base de données : utilisez mysqli pour établir une connexion à la base de données. Préparez la requête SQL : Écrivez une instruction INSERT pour spécifier les colonnes et les valeurs à insérer. Exécuter la requête : utilisez la méthode query() pour exécuter la requête d'insertion en cas de succès, un message de confirmation sera généré.

L'un des changements majeurs introduits dans MySQL 8.4 (la dernière version LTS en 2024) est que le plugin « MySQL Native Password » n'est plus activé par défaut. De plus, MySQL 9.0 supprime complètement ce plugin. Ce changement affecte PHP et d'autres applications

Pour utiliser les procédures stockées MySQL en PHP : Utilisez PDO ou l'extension MySQLi pour vous connecter à une base de données MySQL. Préparez l'instruction pour appeler la procédure stockée. Exécutez la procédure stockée. Traitez le jeu de résultats (si la procédure stockée renvoie des résultats). Fermez la connexion à la base de données.

La création d'une table MySQL à l'aide de PHP nécessite les étapes suivantes : Connectez-vous à la base de données. Créez la base de données si elle n'existe pas. Sélectionnez une base de données. Créer un tableau. Exécutez la requête. Fermez la connexion.

La base de données Oracle et MySQL sont toutes deux des bases de données basées sur le modèle relationnel, mais Oracle est supérieur en termes de compatibilité, d'évolutivité, de types de données et de sécurité ; tandis que MySQL se concentre sur la vitesse et la flexibilité et est plus adapté aux ensembles de données de petite et moyenne taille. ① Oracle propose une large gamme de types de données, ② fournit des fonctionnalités de sécurité avancées, ③ convient aux applications de niveau entreprise ; ① MySQL prend en charge les types de données NoSQL, ② a moins de mesures de sécurité et ③ convient aux applications de petite et moyenne taille.
